On the Key Points of Technical Management in High rise Building Engineering

Jie Jin*
Taishan University, Tai'an 271000, Shandong, China
*Corresponding author

Abstract
For the technical management of high-rise building construction projects, it involves a systematic approach throughout the entire construction process. The preconstruction stage requires careful planning, from site selection to market analysis, while engineering design ensures structural integrity and functional efficiency. Efficient project organization, procurement, and on-site management, as well as strict quality control, are crucial during the construction phase. The focus of the post construction phase is debugging, seamless handover, and continuous facility operation and maintenance. Overall, by adopting comprehensive technical management, the safe and efficient construction of high-rise buildings has been ensured, meeting functional and aesthetic requirements while considering environmental protection.

Keywords
High-rise buildings; Construction engineering; Technical management; main points.

1. Introduction
With the continuous development of urbanization and the continuous improvement of building technology and construction level in China, high-rise building construction projects in cities have become a focus of people's attention. Technical management of high-rise building construction engineering is a comprehensive process that spans the pre-construction, construction, and post-construction stages. This holistic approach ensures the successful construction of high-rise buildings and meets technical, quality, and sustainability goals.

2. Technical management in the early preparation stage
2.1. Project Planning and Feasibility Study
Project planning is the first step towards the success of high-rise building projects. It involves meticulous planning and evaluation to ensure project feasibility and alignment with project objectives. This stage includes the following key elements: (1) Site selection. The site selection of high-rise buildings is crucial. Transportation convenience, nearby facilities, environmental conditions, and legal requirements all play an important role in the site selection process. (2) Environmental impact assessment. It involves evaluating how the project will affect the surrounding ecosystem, air quality, water resources, etc. Mitigation measures may need to be implemented to minimize adverse effects. (3) Market analysis and decision-making. A comprehensive market analysis helps to understand the demand for high-rise buildings in the target area. Analyzing market trends, demand, and competition can help make informed decisions about the feasibility and profitability of a project.
2.2. Engineering Design

After completing the planning and feasibility study, the project enters the engineering design phase. The characteristic of this stage is to develop detailed plans and blueprints to ensure that the building meets safety standards, functional requirements, and aesthetic goals. Specifically, it includes: (1) architectural design. Architectural design focuses on the appearance, layout, and functionality of buildings. Architects work closely with clients to create designs that not only satisfy aesthetic preferences but also practical needs, such as space utilization, natural lighting, and ventilation. (2) Structural design. Structural engineers are responsible for designing the framework of buildings to ensure their stability, safety, and ability to withstand various loads and environmental conditions. This includes determining the materials, dimensions, and load-bearing capacity of the structure. (4) Mechanical, electrical, and piping design. This includes heating, ventilation, air conditioning (HVAC), electrical wiring, lighting, plumbing, and fire protection systems. Through scientific design, ensure the comfort, safety, and functionality of buildings[1].

3. Technical management during the construction phase

3.1. Project organization and team management

Project organization and team management are the foundation for the successful implementation of high-rise building projects. This includes establishing clear roles and responsibilities, creating organizational structures, and building a technically skilled and proactive project team. Specifically, (1) Organizational structure. A clear organizational structure is crucial for effectively allocating responsibility and power. Usually, this includes project managers, construction managers, engineers, architects, subcontractors, and workers. (2) Team building. Establishing a cohesive and collaborative project team is crucial. Team members should possess the necessary skills and experience, and effective communication is necessary to ensure the smooth execution of the project. (3) Leadership. The strong leadership of a project manager is crucial for maintaining the normal progress of the project, managing risks, and making wise decisions. They supervise the entire construction process to ensure it meets the project schedule and budget.

3.2. Procurement and Supply Chain Management

Efficient procurement and supply chain management are crucial for ensuring that materials, equipment, and services are provided at appropriate quality and cost when needed. This involves several key components: (1) procurement and selection. The procurement team identifies and selects suppliers and subcontractors based on factors such as cost, quality, reliability, and reputation. (2) Material management. Efficient handling, storage, and tracking of on-site materials are crucial for avoiding delays and waste. Usually, timely inventory management practices are adopted to minimize inventory costs. (3) Supplier relationships. Maintaining strong relationships with suppliers and subcontractors, communication and collaboration are crucial. (4) Cost control. Implement effective cost control measures to ensure that the project remains within budget. This includes monitoring expenses, managing change orders, and promptly resolving cost overruns[2].

3.3. Construction site management

The construction site is the place where all activities take place, and its management is crucial for the success of the project. Appropriate on-site management involves a series of activities: (1) safety management. Ensuring the safety of all workers and visitors is the top priority. Implement safety protocols, provide training, and equip to prevent accidents and injuries. (2) Logistics management. Managing the flow of materials, equipment, and personnel on site is crucial. Efficient logistics can reduce downtime and improve productivity. (3) Quality control.
Monitor and implement quality standards at every stage of construction to ensure that the final product complies with design specifications and industry regulations. (4) Progress monitoring. Regularly tracking project progress according to the schedule can help identify and resolve delays or issues in a timely manner. (5) Environmental compliance. High rise buildings usually need to comply with environmental regulations, including waste disposal and mitigating environmental impacts. The on-site manager must pay attention to monitoring these aspects.

3.4. Quality Management

Quality management is crucial for delivering high-rise buildings that meet safety, functional, and aesthetic requirements. Specifically, it includes: (1) quality assurance. Establish processes and procedures to ensure that construction activities comply with design and relevant standards. This includes quality planning, inspection, and auditing. (2) Quality control. Implement inspections and checks, promptly identify and correct defects and non-conformities. It involves monitoring processes, materials, and installation. (3) Testing and debugging. High rise buildings typically have complex systems such as HVAC, electrical, and plumbing. Test and debug to verify whether these systems operate as expected and ensure the safety of residents. (4) Record. Maintaining comprehensive documentation throughout the entire construction process is crucial. This includes records of inspection, testing, completion drawings, and warranty. (5) Customer satisfaction. Regularly communicate with customers and resolve any concerns.

4. Completion stage management

4.1. Debugging and Handover

Debugging is the process of verifying and fine-tuning all building systems and components to ensure they operate in accordance with design specifications and operational requirements. Handover involves formally transferring completed buildings from the construction team to the owner or operator. The following is a detailed explanation: (1) System testing. Every system in high-rise buildings, including HVAC, electrical, plumbing, fire safety, etc., has undergone thorough testing and evaluation. (2) Functional testing. In addition to individual systems, functional testing also involves evaluating how these systems work together. For example, verifying whether heating and cooling systems maintain comfortable indoor temperatures. (3) Documents. Accurate and comprehensive documentation is crucial during debugging and handover. This document includes completion drawings, equipment manuals, maintenance plans, and warranties. (4) List of outstanding issues and solutions. It is crucial to address any outstanding issues or defects discovered during the debugging process. These may include appearance defects, functional issues, or safety hazards. (5) Final inspection. Independent inspections or reviews may be conducted to verify whether the building meets all applicable codes and standards prior to occupancy.

4.2. Facility operation and maintenance

After the building is debugged and handed over, it enters the operational phase. Proper operation and maintenance of facilities are crucial for ensuring the long-term functionality, safety, and value of buildings. The following is the content of this stage: (1) Daily maintenance. Arrange regular inspections and maintenance activities to prevent wear and tear, detect potential issues early, and ensure the continuous and efficient operation of building systems. (2) Emergency response. Establishing emergency response protocols is crucial for dealing with unexpected situations (such as fires, natural disasters, or equipment failures) and helps protect residents and buildings. (3) Energy management. Implementing energy-saving practices and systems can reduce operating costs and minimize the impact of buildings on the environment. This may involve optimizing HVAC settings, lighting control, and renewable energy. (4) Security
and access control. Implementing strong security measures, including access control systems and surveillance, is crucial for protecting buildings, their occupants, and their assets. (5) Life cycle planning. Develop long-term plans for facility maintenance, upgrades, and renovations to ensure the sustainability and lifespan of buildings[4].

5. Epilogue

In summary, technical management of high-rise building construction engineering is a multifaceted task that requires careful consideration at each stage of the project lifecycle. By carefully addressing pre construction planning, design, construction, and post construction maintenance, we ensure the delivery of safe, practical, and sustainable high-rise buildings. This comprehensive management method emphasizes quality, efficiency, and environmental awareness, ensuring that high-rise buildings not only meet the needs of modern life, but also make positive contributions to the urban landscape.

References


