Overview of River Ecological Dynamics
Meiting Chen
Chongqing Jiaotong University, Chongqing 400074, China

Abstract

River ecological dynamics is a discipline that studies the structure, function and change of river ecosystems. It focuses on the interaction of rivers and their surroundings and explores how these ecosystems are affected and regulated by internal and external factors. River ecosystems are important sites for rich biodiversity and ecological processes, and are essential for maintaining the health of the Earth’s biosphere. River ecological dynamics involves the study of many aspects. First, it studies the structure of river ecosystems, including species composition, biodiversity, and habitat types. Secondly, river ecodynamics focuses on ecological processes such as material cycles, energy flows, and trophic level relationships. In addition, the study of river ecological dynamics also involves the temporal and spatial dynamics of ecosystems. River ecosystems change on temporal and spatial scales, influenced by factors such as seasons, climate and geographical conditions. Ecosystem restoration is also one of the key areas of river ecological dynamics. With the destruction of river ecosystems by human activities, restoring damaged systems becomes critical. The study of river ecological dynamics can provide restoration strategies and assessment methods to help achieve sustainable management of river ecosystems. In conclusion, the study of river ecological dynamics is essential for understanding and managing river ecosystems. It covers structural, functional, dynamic change and restoration aspects, providing scientific support for the conservation and sustainable use of river resources. By in-depth study of river ecological dynamics, we can better protect the health of river ecosystems and provide guidance for the coordinated development of human beings and the natural environment in the future.

Keywords
River Ecological Dynamics; Composition and Function; Sabotage and Protection; Research Methods; Applications and Challenges.

1. The Concept of River Ecological Dynamics

The ecological dynamics of rivers is a discipline that studies the interactions of biological, physical, and chemical processes in river systems. It involves the structure, function, and changes of the ecological system in rivers, as well as the interrelationships between biological communities, environmental conditions, and ecological processes. Traditional river dynamics mainly studies the processes of erosion, transportation, and deposition of sediment particles under the effects of gravity, running water, waves, and wind force[1]. River ecological dynamics aims to understand the operating mechanisms, regulatory factors, and responses of river ecosystems in order to better manage and protect these ecosystems[2]. Based on the basic concepts and methods of traditional river dynamics and river ecology, river ecological dynamics seeks to explore the ecological impact mechanisms of water and sediment transport in river ecosystems through interdisciplinary research. It has gradually been applied to the assessment and management of water ecological environments in major rivers[3].
There are several fundamental concepts in the field of river ecological dynamics that are very important: ecological networks, trophic structure, stress and adaptation. These concepts describe the interactions and dynamic changes of various components in river ecosystems:

1) Ecological network: It refers to the interrelationship between different species in the river ecosystem, including food chains, food webs, and interdependence between other organisms.
2) Trophic structure: It describes the hierarchical transfer of energy and matter among various species in the river ecosystem.
3) Strain: In river ecological dynamics, strain refers to the ability of the river ecosystem to respond to environmental changes. These changes may include climate change, human intervention, water quality changes, etc.
4) Adaptation: It refers to the long-term adjustment and development of biological and non-biological components in the river ecosystem to environmental changes, so as to survive and reproduce under changing conditions.

There are close interactions and relationships among these concepts. The ecological network and trophic structure determine the interdependence and feeding relationships between species, playing an important role in the structure and function of river ecosystems. Strain and adaptation describe the ability of river ecosystems to respond to and adjust to environmental changes, which is a key factor in their dynamic changes and evolution. Therefore, understanding and studying these concepts is very important for revealing the structure, function, and evolution process of river ecosystems.

2. The Main Content of River Ecosystem

2.1. Composition and Function of River Ecosystem

The river ecosystem is a complex ecosystem composed of biological communities, physical environments and chemical components:

1) Biological community: The river ecosystem includes various biological communities, including plants, animals, and microorganisms.
2) Physical environment: The physical environment of the river ecosystem includes factors such as water bodies, flow velocity, bottom substrate, temperature, and lighting.
3) Chemical composition: The chemical composition of the river ecosystem includes pH value of water, dissolved oxygen, ammonia nitrogen, nitrite, nitrate, phosphate, etc. These chemical components have an important impact on the survival and reproduction of aquatic organisms.
4) The composition and function of the river ecosystem are interconnected. There is an interaction and dependence relationship between the biological community and the physical environment and chemical composition.

The river ecosystem has multiple functions, including material circulation, energy flow, and maintaining ecological processes:

1) Material cycle: River ecosystems participate in various material cycles, including water cycle, carbon cycle, nitrogen cycle, and phosphorus cycle.
2) Energy flow: The energy flow in river ecosystems refers to the transfer of energy from one organism to another. This energy flow maintains the survival of organisms and the stability of biological communities in river ecosystems.
3) Maintaining ecological processes: River ecosystems maintain their stability and health through a series of ecological processes. These ecological processes interact to ensure the balance and continuous operation of river ecosystems.

In addition to the aforementioned functions, river ecosystems also have functions such as water quality regulation, flood regulation, ecological landscape formation, and cultural value.
Through these functions, river ecosystems provide important resources and ecological services for humans and other organisms. It is crucial to protect and manage river ecosystems to ensure that they can continue to provide these functions and promote sustainable development and ecological balance. However, in recent years, due to the rapid development of human social productivity and the surge in population, overexploitation of water resources has led to an increase in the destruction of river ecosystems, which has caused damage to the ecological environment of rivers and threatened the health of rivers.

2.2. Biodiversity in River Ecosystems
Biodiversity in river ecosystems plays a crucial role in its stability and function:
1) Stability: Biodiversity can increase the stability of river ecosystems. An ecosystem with a rich species diversity has more genetic resources and adaptability, which can better cope with environmental changes and external pressures.
2) Function: Biodiversity is crucial to the functioning of river ecosystems. Different species play different roles and functions in the ecosystem, such as energy transfer, nutrient cycling, organic matter decomposition, and pest control. The smooth functioning of these functions requires interactions and interdependencies between species.
3) Impact of human activities: Human activities have a significant impact on biodiversity in river ecosystems. Pollution of rivers, excessive use of water resources, riverbank development, dam construction, and illegal fishing are all human activities that can lead to the loss of biodiversity and the destruction of biological communities.
4) Necessity of protection: It is essential to protect biodiversity in river ecosystems. Protecting biodiversity helps to maintain the health of river ecosystems, ensure their sustainable development, and provide ecological services.

Hydraulic conditions also directly affect the structure of aquatic biological communities and drive the evolution of river ecological functions, which have been identified as key regulatory factors for the ecological health of rivers. When protecting biodiversity, humans and government departments need to strengthen environmental awareness and the implementation of laws and regulations.

2.3. Factors Affecting River Ecosystems
With the continuous urbanization process, the hydrological cycle, sediment transport and nutrient flow of rivers are affected, resulting in significant changes in river hydrological conditions and channel morphology, leading to water quality deterioration and a sharp decline in biodiversity. This aggravates the degradation process of urban river ecosystems. When analyzing the factors that affect river ecosystems, we can divide them into natural factors and anthropogenic factors.

1) Natural factors include climate change and hydrological conditions
Climate change has led to changes in precipitation patterns, increased temperatures, and intensified evaporation and transpiration processes, all of which have significant impacts on river ecosystems. For example, changes in precipitation directly affect river water levels and flow rates, thereby influencing habitat formation and species distribution. Increased temperatures can alter the dissolved oxygen content of water bodies, affecting the physiological activities and reproduction of aquatic organisms.

In 1992, Arthington et al. in Australia viewed the river ecosystem as a whole and, based on the natural hydrological conditions of the river, determined the biological and ecological characteristics that need to be protected. The importance of the hydrological process to the river ecosystem cannot be underestimated, as it directly or indirectly affects aspects such as water supply, water quality, habitat formation and maintenance, biodiversity maintenance, and...
nutrient cycling[14]. Therefore, understanding and studying the hydrological process is very important for protecting and restoring the health of river ecosystems.

2) Human factors are another important factor affecting river ecosystems

Human activities such as land use changes, water resources development and utilization, pollutant emissions, and so on, all have direct or indirect impacts on river ecology[15]:

a) Ecological connectivity disruption: Human activities such as dam construction and river channel renovation will disrupt the connectivity of rivers, impeding the migration and migration of fish and other aquatic organisms, affecting the genetic diversity of populations and the stability of ecosystems.

b) Habitat destruction: Land use changes, wetland development, and water resource development caused by human activities can lead to the destruction and fragmentation of river habitats. This makes some species lose suitable habitats and affects their survival and reproduction capabilities.

c) Impact of pollutants: Emissions of pollutants caused by human activities can lead to eutrophication of water bodies, deterioration of water quality, and increased toxicity to living organisms. This can have a direct toxic effect on aquatic organisms and disrupt the balance of the food chain and ecosystem.

In conclusion, both natural and anthropogenic factors have impacts on river ecosystems. The research and management of river ecological dynamics should take these factors into account to develop reasonable measures to protect and restore the health and function of river ecosystems. This includes enhancing the resilience and adaptability of river ecosystems, promoting sustainable water resource management and material circulation, reducing pollutant emissions, protecting and restoring river habitats, and maintaining river connectivity.

3. Research Methods of River Ecological Dynamics

Various methods are usually adopted in studying the ecological dynamics of river, including field investigation, data collection and mathematical models, multidisciplinary comprehensive methods, etc.

3.1. Field Survey

Field investigation is one of the important methods for studying river ecosystems. Researchers will personally go to different areas of the river to conduct field observations and sampling. Field investigations can be used to collect quantitative and qualitative data on water characteristics, benthos, fish, vegetation, etc. Through field investigations, researchers can directly observe and record information such as biodiversity in rivers, habitat conditions, and community structure.

3.2. Data Collection

Data collection is a necessary process for studying river ecological dynamics, which includes collecting hydrological data (such as water level, flow velocity, water temperature), water quality data (such as dissolved oxygen, nitrogen, phosphorus and other indicators), and biological monitoring data (such as sample data of benthic organisms and fish communities). Data collection can be carried out through automatic monitoring equipment, sensors, regular sampling, etc. The collection and analysis of data help to reveal the status and trends of river ecosystems, providing decision support and scientific basis.

3.3. Mathematical Model

Mathematical models play an important role in the study of river ecological dynamics. By mathematically describing the physical, chemical, and biological processes of the river system, mathematical models can simulate and predict the operation and response of the river
ecosystem. Common mathematical models include hydrological models, water quality models, and species distribution models. These models can help researchers deeply understand the mechanisms and interactions of river ecosystems, predict the impact of different disturbances on ecosystems, and evaluate the effectiveness of management and protection measures.

In practical engineering, mathematical models are frequently used. For example, the R language package\cite{16} can be used to generate digital terrain models (DTMs) for river channels; the MIKE21\cite{17} hydrodynamic module can be used to solve plane flow field parameters with vertical average flow as the object\cite{18}, which has been widely used in river, lake, estuary and coastal hydrodynamic and sediment simulation. The main physical variables in river dynamics include flow rate, velocity, depth, suspended sediment concentration, bedload transport rate, bed deformation, sediment grading, etc., as well as key factors for sediment movement such as sedimentation rate, start-up velocity, entrainment capacity, and concentration distribution curves\cite{19}. The mathematical model of water and sediment is the most active part in the discipline of sedimentation in recent 30 years\cite{20}. One-, two-, and three-dimensional numerical methods are used to solve sediment erosion and deposition prediction\cite{21}, providing a scientific research plan for engineering sediment research\cite{22}. The large-eddy simulation calculation method can be used to study the transport process of water and sediment on a variety of bed topographies such as flat river beds, pebble-sand mixed beds, sand ripples and shallow and deep channels\cite{23}. The SSWHA is used to represent the ecological availability of suitable aquatic habitats in rivers\cite{24}. DPSIR is used for analysis and processing of hydrodynamic models\cite{25}. Simulation based on RegCM4 is also conducted\cite{26}.

3.4. Multidisciplinary Cooperation and Comprehensive Methods

River ecological dynamics is a complex research field that requires multidisciplinary collaboration and comprehensive methods to solve problems beyond conventional research methods. For example, experts from different fields such as biologists, hydrologists, water resources management experts, and social scientists can collaborate on the research and management of river ecosystems. By combining field surveys, data collection, and mathematical modeling methods, we can understand the dynamic changes of river ecosystems from different perspectives and scales, take into account the impact of natural factors and human activities on the ecosystem, and develop comprehensive management strategies and protection measures\cite{27}. Below are several important aspects of multidisciplinary cooperation and comprehensive methods in the study of river ecological dynamics:

1) Comprehensive Data Analysis: The study of river ecosystems requires the collection and analysis of data from multiple aspects, including hydrological data, water quality data, biological monitoring data, etc.

2) Interdisciplinary Methodology: The study of river ecological dynamics requires the use of interdisciplinary methodologies that combine research methods and theories from different disciplines. This comprehensive approach can provide more comprehensive and accurate information and understanding.

3) Understanding Complexity and Interactions: River ecosystems are complex systems formed by interactions between multiple biological and environmental factors, as well as human activities. Multidisciplinary cooperation can help researchers understand the dynamic processes of river ecosystems from different perspectives, levels, and scales, and reveal the impact of different factors on the ecosystem.

In summary, the cooperation of multidisciplinary and comprehensive methods play a crucial role in the study of river ecological dynamics, which can improve the comprehensiveness, accuracy and practicality of the research, and provide scientific support for the protection, management and sustainable utilization of river ecosystems.
4. Application and Challenges of River Ecological Dynamics

The practical application of river ecological dynamics in environmental management and protection is very extensive\(^\text{[28]}\), involving river restoration, water quality improvement and natural resources management. The following will introduce the application of these aspects respectively:

1) River Restoration: River Ecological Dynamics provides effective theories and methods that can guide the ecological restoration of rivers. By studying the structure and function of river ecosystems, we can understand the distribution of biodiversity, the reconstruction of ecological processes, and the restoration mechanisms of ecosystems\(^\text{[29]}\). Based on these research findings, restoration plans can be developed, including riverbank restoration, wetland restoration, reintroduction of fish and other biological communities, and monitoring and evaluating the effectiveness of restoration.

2) Water Quality Improvement: River Ecological Dynamics can reveal the impact of different pollution sources on river water quality, studying the transmission, transformation, and accumulation of pollutants\(^\text{[30]}\). With the help of these research findings, water quality improvement strategies and management measures can be formulated, such as reducing emissions from pollution sources, improving wastewater treatment efficiency, and adopting ecological restoration techniques\(^\text{[31]}\). Additionally, river ecological dynamics can be used to evaluate and monitor the effectiveness of water quality improvement and provide scientific support for management and decision-making.

3) Natural Resources Management: River Ecological Dynamics is of great significance for the sustainable utilization and management of river natural resources. By studying the structure and function of river ecosystems, we can understand the distribution, abundance, and population dynamics of biological resources, providing a basis for rational utilization and management. For example, studying the ecological needs and migration patterns of fish can develop fishing management plans; studying the distribution and function of riparian vegetation can guide the protection and management of riverbanks\(^\text{错误}\). River ecological dynamics can also help assess the impact of human activities on natural resources and formulate reasonable protection and management measures.

In general, the application of river ecological dynamics in environmental management and protection involves a wide range of fields, and plays an important role in river restoration, water quality improvement, and natural resource management. It provides theoretical basis, methods, and practical guidance to help protect and sustainably manage river ecosystems, promoting harmonious development between human and nature.

Currently, the river ecological dynamics is facing many challenges, including:

1) Climate Change: Climate change has extensive impacts on river ecosystems. Climate warming leads to glacier melting and changes in precipitation patterns, which in turn affect the hydrological processes, water temperature, water quality, and species composition of river ecosystems. These changes can lead to biodiversity loss, habitat loss, and instability in water supply, posing challenges to the stability and sustainable development of river ecosystems.

2) Human Activities: Human activities have a wide and direct impact on river ecosystems. River waters and riparian areas are often affected by human activities such as agriculture, industrialization, and urbanization. These activities cause damage to water quality, habitats, organisms, and ecological processes, seriously affecting the health and function of river ecosystems.

3) Water Resources Pressure: With the increase of global population and economic development, water resources are facing tremendous pressure. Overexploitation and unreasonable utilization of water resources have led to a decrease in river flow, a drop in water
levels, and the degradation of ecosystems. This water resources pressure weakens the natural ecological functions of rivers, limits the breeding and habitat conditions of aquatic organisms, and poses a threat to the sustainable use of water resources and the health of river ecosystems. Facing these challenges, the research and application of river ecological dynamics become particularly important. By deeply understanding the structure and function of river ecological system and studying its response mechanism to climate change and human activities, scientific basis can be provided for coping with challenges.

5. Conclusion

River ecological dynamics is a subject area that studies the structure, function and changes of river ecosystems. It focuses on the interaction between rivers and their surrounding environment, and studies how these ecosystems respond to internal and external disturbances. To further strengthen the management of river ecology, the main purpose is to strengthen the protection of water resources, achieve the prevention and control of water pollution, improve the water environment, restore the water ecology, and further maintain the vital health of rivers, striving to achieve long-term vitality of river and lake functions.

The importance of river ecological dynamics lies in:

1) Ecological Protection: By studying the structure and function of river ecosystems, we can better understand the needs and importance of biodiversity protection. Protecting river ecosystems helps to maintain biodiversity, preserve natural habitats, and ensure the sustainable development of human society.

2) Water Resources Management: Rivers are important sources of freshwater supply, and studying river ecological dynamics can help us better manage and protect water resources. Understanding hydrological processes, water quality changes, and ecosystem responses can support sustainable water resource use and decision-making.

3) Ecological Restoration: River ecological dynamics provide a scientific basis for restoring disturbed river ecosystems. By understanding the restoration process of river ecosystems, we can develop effective ecological restoration and protection strategies to promote the functional recovery of river ecosystems.

The research on river ecological dynamics is crucial for the protection and sustainable management of river ecosystems. Through in-depth study of the structure and function of river ecosystems, we can better understand their importance and take effective measures to address the current challenges to achieve sustainable development of river ecosystems.

References

