Exploration of UAV Path Planning Methods and Algorithms
DOI:
https://doi.org/10.6919/ICJE.202412_10(12).0007Keywords:
Unmanned Aircraft; Path Planning; Algorithm Classification; Intelligent Optimization Algorithm.Abstract
With the rapid development of Unmanned Aerial Vehicle (UAV) technology, different kinds of UAVs are widely used in the fields of traffic inspection, disaster rescue, cargo delivery, and target reconnaissance due to their flexibility and low altitude flight capability. Path planning, as an important part of UAV autonomous flight, is of great significance to guarantee flight safety and improve mission efficiency. Therefore, clarifying the basic methods and related algorithm classification for carrying out UAV path planning will help to carry out algorithm improvement research in depth in the next step.
Downloads
References
[1] Zhang, Y., Wang, T., & Zhang, L. 2015. a survey of unmanned aerial vehicle path planning methods. advances in mechanical engineering, 2015.
[2] Ren Binwu. Intelligent trajectory planning for tilt-rotor UAV[D]. Nanjing University of Aeronautics and Astronautics, 2023.DOI:10.27239/d.cnki.gnhhu.2021.000784.
[3] Huang, B.D.. Research on quadrotor UAV trajectory planning in complex environment[D]. Lanzhou Jiaotong University,2024.DOI:10.27205/d.cnki.gltec.2023.001517.
[4] wang haifang,cui yangyang,li mingfei et al. Mobile robot path planning algorithm based on improved RRT*FN[J]. Journal of Northeastern University(Natural Science Edition),2022,43(09):1217-1224+1249.
[5] Luo Jinbiao. Research on UAV 3D trajectory planning based on the fusion of artificial potential field and ACMPSO algorithm[D]. Chongqing University of Technology,2022.DOI:10.27753/d.cnki.gcqgx. 2021. 000831.
[6] Zeng Qing. Research on UAV path planning based on swarm intelligence algorithm[D]. Chongqing University of Technology,2022.DOI:10.27753/d.cnki.gcqgx.2022.000779.
[7] ZHU D,SUN J.A New Algorithm Based on Dijkstra for Vehicle Path Planning Considering Intersection Attribute[J].IEEE access,2021,9:19761-19775.
[8] Hart P E,Nilsson NJ,Raphael B.A formal basis for the heuristic determination of minimum cost paths[J].IEEE transactions on Systems Science and Cybernetics,1968,4(2):100-107.
[9] Moore,Wayne,Tulip,et al.Optimization Using Boundary LookupJumpPoint Search[J].IEEE transactions on computational intelligence and AI in games, 2016,8(3):268-277.
[10] Kavraki L E,Svestka P,Latombe J C,et al.Probabilistic roadmaps for path planning in high dimensional configuration spaces[J].IEEE transactions on Robotics and Automation,1996,12 (4):566-580.
[11] LaValle S M. Rapidly-exploring random trees:A new tool for path planning[J].1998.
[12] Mashayekhi R,Idris M Y I,Anisi M H,et al.Hybrid RRT:A Semi-Dual-Tree Bi-RRTased Motion Planner[J]IEEE Access,2020,8:1 8658-1 8668.
[13] Xin P,Ma Xi-Qing. A path planning algorithm incorporating improved RRT and dynamic window method[J]. Machine Tools and Hydraulics,2022,50(23):20- 24.
[14] Sun H ,Dai L ,Wang P . An efficient mobile obstacle avoidance scheme for unmanned aerial vehicles based on output feedback robust MPC[J].IEEE Aerospace and Electronic Systems Repertoire, 60[2024-10-28].DOI:10.1109/TAES.2024.3401094.
[15] Khatib O .Real-Time Obstacle Avoidance System for Manipulators and Mobile Robots[J].The International Journal of Robotics Research, 1986, 5(1):9098.DOI:10.1177/027836498600500106.
[16] Fox D , Burgard W , Thrun S .The dynamic window approach to collision avoidance[J].IEEE, 1997(1).DOI:10.1109/100.580977.
[17] Borenstein J , Koren Y .Real-time obstacle avoidance for fast mobile robots[J].IEEE Transactions on Systems Man & Cybernetics, 2002, 19(5):1179- 1187.DOI:10.1109/21.44033.
[18] Borenstein,J,Koren,et al.Vector field histograms for mobile robots-fast obstacle avoidance[J]. Robotics and Automation,IEEE Transactions on,1991.DOI:10.1109/70.88137.
[19] Kennedy J ,Eberhardt R . Particle swarm optimization[C]//Icnn95-international Conference on Neural Networks.IEEE, 1995.DOI:10.1109/ICNN.1995.488968.
[20] Zhou Hongwei. Research on the phenomenon of "early maturity" and improvement strategy of genetic algorithm[D]. PLA Information Engineering University, 2005.
[21] WU Husheng,ZHANG Fengming,WU Lushan. A new group intelligence algorithm - wolf pack algorithm[J]. Systems Engineering and Electronics,2013,35(11):2430-2438.
[22] Xue JK. Research and application of a novel swarm intelligent optimization technique [D]. Donghua University,2020.DOI:10.27012/d.cnki.gdhuu.2020.000178.
[23] Efficient selectivity and backup operators in Monte Carlo tree search[J].2006.DOI:10.1007/978-3-540-75538-8_7.
[24] Sutton, R.S. Learning to predict through time-differentiated methods. Mach Learning 3, 9-44 (1988). https://doi.org/10.1007/BF00115009.
[25] Tu G T,Juang J G.Path Planning and Obstacle Avoidance Based on Reinforcement Learning for UAV Application[C]//2021 International Conference on System Science and Engineering(ICSSE).IEEE, 2021: 352-355.
Downloads
Published
Issue
Section
License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.