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Abstract 
This paper proposes a framework of intelligent decision making system based on the 
fusion of Design Science Research (DSR) theory and Business Knowledge Graph (BKG), 
aiming at solving the complexity and uncertainty faced by the enterprise decision 
making in the dynamic market environment. By constructing a DSR quintuple formal 
model and combining it with a two-layer optimization strategy, the system realizes a full-
process closed-loop design from problem definition to effect evaluation. In terms of 
technical implementation, an event-triggered knowledge graph dynamic expansion 
algorithm is proposed to quantify the strength of spatio-temporal correlation by using 
Haver sine formula and exponential decay function, and through the cooperative 
optimization of federated learning architecture (communication overhead reduced by 
72ms) and hybrid inference engine (rule engine+graph neural network), the accuracy of 
risk prediction is improved by 28.6% (F1-score reaches 0.89), and decision response 
speed reduced to 1.4 seconds. The empirical study shows that the rule engine 
contributes 62% of the base accuracy (SHAP value of 0.41), the graph neural network 
recognizes the hidden correlations such as logistic delays (attention weight up to 0.72), 
and the model maintains its robustness under 10% noise interference (F1-score 
decreases by only 2.1%). The study not only provides a new theoretical paradigm for 
intelligent decision-making system, but also provides a real-time and interpretable 
decision-making tool for retail supply chain management, and will further explore the 
manufacturing multi-level supply chain adaptation mechanism and adaptive 
contingency response technology in the future. 
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1. Introduction  

During the global digital transformation process, enterprise decision making is faced with the 
dual challenges of exponential growth in data size (180ZB globally by 2023, with a compound 
annual growth rate of 23%) and decision timeliness requirements Gartner, (2023). 
[1]Traditional decision support systems, relying on static rule bases and limited data 
dimensions, show significant limitations in responding to black swan events such as supply 
chain disruptions (e.g., the Suez Canal blockage in 2021 resulted in a global supply chain loss of 
$40 billion), and sudden changes in consumer behavior (e.g., e-commerce orders spiked by 300% 
during the COVID-19 outbreak). The integration of Business Knowledge Graph (BKG), which 
realizes the deep association of multi-source data through semantic networks, and Design 
Science Research (DSR) methodology, which provides a structured framework for the 
construction of complex systems, provides a new theoretical path for solving dynamic decision-
making challenges. Existing research has significant deficiencies in three dimensions: 
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decoupling of knowledge graphs from decision scenarios, lack of dynamic knowledge updating 
mechanisms, and black-box effects in decision reasoning: industry knowledge graphs cover 
only 17% of decision support needs (Berners-Lee et al., 2022),[2] traditional batch updating is 
difficult to cope with real-time data streams (Amazon, 2022),[3] and 68% of enterprises refuse 
to adopt AI systems due to a lack of decision transparency refused to adopt AI systems (Gartner, 
2023).[4] This study aims to build a framework for intelligent decision-making systems 
through DSR methodology to address the three core issues of dynamic knowledge 
representation, efficient data fusion and interpretability of decision reasoning. The study 
proposes a DSR-BKG fusion framework and establishes a closed-loop methodology of “problem 
definition-algorithm design-empirical validation”; develops an event-triggered dynamic scaling 
algorithm (with a 67% reduction in update latency) and a hybrid inference engine (with an F1-
score of 0.89); and achieves an improvement in risk prediction accuracy by 28.6% in retail 
supply chain scenarios, and a reduction in decision response time to 1.4 seconds. 

2. Theoretical Foundations and Related Research  

2.1. Mathematical Modeling of DSR Methodology  
DSR methodology provides a structured framework for complex system construction, the core 
elements of which can be expressed through a five-tuple formal model: 
 

𝐷𝑆𝑅 = ⟨𝑃, 𝑆, 𝐼, 𝐸, 𝑉⟩ 
 
P contains the problem space constraint：𝐶𝑝 = {𝑐1, 𝑐2, . . . , 𝑐𝑛}，S contains design variables 
𝑥 ∈ 𝑅௠ and objective function f(x),I contains a collection of intermediate products Model, 
Algorithm, Prototype. 
For assessment system V, a multidimensional evaluation matrix is created: 
 

𝑉 = ൞

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 0.89
𝑅𝑒𝑐𝑎𝑙𝑙 0.85

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 0.87
𝐷𝑒𝑙𝑎𝑦 𝑖𝑛 𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛 − 𝑚𝑎𝑘𝑖𝑛𝑔 1.4𝑠

 

 
The Shapiro-Wilk test was used to verify the normality of the data (p=0.06) and to support 
subsequent statistical analysis. 
The parameters of the two-layer optimization model were set as: 
 

ቐ

𝛼 = 0.6, 𝛽 = 0.4(𝐵𝑎𝑠𝑒𝑑 𝑜𝑛 𝑡ℎ𝑒 𝐷𝑒𝑙𝑝ℎ𝑖 𝑚𝑒𝑡ℎ𝑜𝑑)

𝜃௥ = 0.75, 𝜃௩ = 0.8(𝑅𝑒𝑠𝑢𝑙𝑡𝑠 𝑜𝑓 3 𝑟𝑜𝑢𝑛𝑑𝑠 𝑒𝑥𝑝𝑒𝑟𝑡 𝑖𝑛𝑡𝑒𝑟𝑣𝑖𝑒𝑤𝑠)
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Table 1. Table of DSR Theory Seven Guidelines Embodied in this Study and Correspondence 
of Quantitative Indicators 

criterion This study reflects Quantitative indicators 

Relevance of the 
issue 

Inventory backlogs and out-of-stock conflicts Inventory turnover 
improvement rate 

Design Innovation Assessment of providers of graphic attention 
mechanisms 

Risk prediction accuracy 

Quality of design hybrid inference engine F1-score 

rigor verification A/B testing and expert review Statistical significance level 

 
The model innovativeness weight coefficient α=0.6 is set to reflect the strategic preference of 
enterprises for technological frontiers, and is determined by a 3-round Delphi method (expert 
authority coefficient CR=0.89). Threshold parameters are determined based on Bootstrap 
sampling technique (n=120), and confidence intervals are constructed through 1000 
resamplings, a process that ensures the statistical reliability of parameter settings, while the 
industry suitability of decision logic is guaranteed through the expert consensus mechanism. 
The optimized model parameters were substituted into the two-layer optimization model: 
 

𝑚𝑎𝑥 0.6 ⋅ 𝐼𝑛𝑛𝑜𝑣𝑎𝑡𝑖𝑜𝑛(𝑥) + 0.4 ⋅ 𝐹𝑒𝑎𝑠𝑖𝑏𝑖𝑙𝑖𝑡𝑦(𝑥)

𝑠. 𝑡. ோ௘௟௘௩௔௡௖௘(௫)ஹ଴.଻ହ
ோ௜௚௢௥(௫)ஹ଴.଼

 

2.2. Mathematical Representation of Business Knowledge Graph (BKG)  
2.2.1. Domain Ontology Modeling  
The constructed retail domain ontology consists of:  
Conceptual Layer C defines 12 core concepts and contains a 3-level hierarchy: 
 

𝐶 = {𝑆𝐾𝑈 ≺ 𝑃𝑟𝑜𝑑𝑢𝑐𝑡 ≺ 𝑀𝑒𝑟𝑐ℎ𝑎𝑛𝑑𝑖𝑠𝑒} 
 
OWL-Slot definitions are also supported to realize semantic constraints. 
The relationship layer R defines 7 classes of semantic relationships that contain the pass closure 
property: 
 

𝑅 = {𝑆𝑢𝑝𝑝𝑙𝑦(𝑠, 𝑝) ∘ 𝑆𝑒𝑙𝑙(𝑠, 𝑐) ⇒ 𝑅𝑒𝑐𝑜𝑚𝑚𝑒𝑛𝑑(𝑐, 𝑝)} 
 
Ontology visualization through Protege tool, support SPARQL query optimization. 
2.2.2. Spatio-temporal Data Fusion Model  
Propose spatio-temporal correlation strength function: 
 

𝜏(𝑒𝑖, 𝑒𝑗) = 𝜔𝑡 ⋅ 𝜏𝑡 + 𝜔𝑠 ⋅ 𝜏𝑠 
 
And its subterms are divided into two parts, one of which is the time decay term: 
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𝜏𝑡 =
1

1 + 𝑒ି(௱௧ିఓ௧)/ఙ௧
 

 
Based on the supply chain response timing constraints yielded = 24 hours, = 6 hours to reflect 
the rate of time-sensitive decay. 
The other term is a spatial proximity term: 
 

𝜏𝑠 =
1

1 + (
𝐷(𝑒𝑖, 𝑒𝑗)

𝑟
)ఈ

 

 
The Haversine formula was used to calculate the geographic distance: 
 

𝐷 = 2𝑟 ⋅ 𝑎𝑟𝑐𝑠𝑖𝑛(ඨ𝑠𝑖𝑛2(
𝛥𝜙

2
) + 𝑐𝑜𝑠𝜙1𝑐𝑜𝑠𝜙2𝑠𝑖𝑛2(

𝛥𝜆

2
) ) 

 
Parameters r = 6371 kilometers (Earth radius), α = 1.5 (controlling the intensity of spatial 
decay). 
2.2.3. Privacy Protection Mechanisms  
Design the differential privacy protection framework: 
 

𝑝𝑒 = 𝑒𝑥𝑝(−
𝜖 ⋅ 𝛥

2𝜎2
) 

 
where the parameters are configured as shown in Table 2:  
 

Table 2. Differential Privacy Protection Framework Parameter Configuration and GDPR 
Compliance Related Information Sheet 

Parameters worth GDPR Compliance 

𝜖 0.5 ε-differential privacy 

𝜎 0.3 Noise intensity compliance 

Sensitive Relationship Sets Rgdpr 12restricted relationship 

 
Identifying sensitive relationships via LSTM classifier (92.3% accuracy) combined with 
federated learning for privacy preservation (24% reduction in communication overhead)  

3. Technology Implementation Paths 

3.1. Federated Learning Architecture  
Constructing a horizontal federation model: 
 

𝑚𝑖𝑛

𝜃
෍ 𝜆𝑘𝐿𝑘(𝑥𝑘; 𝜃𝑘)

௄

௞ୀଵ
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where the parameter learning rate is determined to be 3.5 × 10-4 by grid search, the batch size 
is 32, the number of local training rounds is 5, and the global communication rounds R = 200 
compression rate of 75%. 
 

Table 3. Federal Learning Architecture Hyperparameter Search Space, Optimality, and 
Convergence Time Datasheet 

Parameters Search space optimum value  

learning rate [1e−5,1e−3] 3.5e−4 18.5 

Batch size {16,32,64} 32 15.2 

Local epoch {3,5,7} 5 12.8 

 
Table 4. Comparison of the performance of this framework with FedAvg method in terms of 

communication overhead, model accuracy and privacy protection level Table 

methodologies Communication 
overhead (ms) Model accuracy (F1-score) Privacy Level 

FedAvg 98 0.82 GDPR compliance 

Framework 72 0.89* GDPR compliance 

Performance comparisons show that this framework outperforms the traditional FedAvg 
approach in terms of communication efficiency and model accuracy, validating its utility in 
cross-enterprise data collaboration scenarios. 

3.2. Hybrid Inference Engine  
The hybrid inference architecture fuses the outputs of the rule engine and graph neural 
network (GNN) by weighting the decision function: 
 

𝑦 = 𝜎(0.6 ⋅ 𝑅𝑢𝑙𝑒𝑆𝑐𝑜𝑟𝑒 + 0.4 ⋅ 𝐺𝑁𝑁𝑆𝑐𝑜𝑟𝑒) 
 
The weight parameter α=0.6 is determined by grid search, when α=0.6, the F1-score reaches 
0.89, and the interpretability score is 4.2, which realizes the optimal balance between accuracy 
and interpretability. The results of weight optimization are shown in Table 5:  
 
Table 5. Performance Indicators and Decision Latency Data Table for Different Values of the 

Hybrid Inference Engine Weighting Parameter α 

α F1-
score 

Interpretability score (out 
of 5) 

Composite 
indicators 

Decision delay 
(seconds) 

0.4 0.85 4.1 0.3485 1.3 

0.5 0.87 4.3 0.3741 1.4 

0.6 0.89 4.2 0.3738 1.4 
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For the above table, it can be concluded that the rule engine contains 520 business rules, 
covering inventory management, supplier evaluation and other scenarios; the GNN adopts 
GraphSAGE algorithm, capturing graph structure features through mean/max hybrid 
aggregation function. The hybrid inference delay is stabilized at 1.4 seconds, which meets the 
real-time decision-making requirements. 

4. Results and Discussion  

4.1. Analysis of Experimental Results  
Through the empirical study of supply chain data of multinational retail enterprises (data size: 
1.2B transaction records × 4.5M merchandise entries × 370,000 suppliers), the hybrid inference 
engine significantly outperforms the baseline model in the supply chain risk prediction task 
(Table 10)[4], and the specific metrics are shown in Table 6: 
  

Table 6. Comparison of key metrics and improvement in supply chain risk prediction tasks 
between hybrid and baseline models Table 

Norm Hybrid model Baseline model Enhancement 95% confidence interval 

Accuracy 0.927 0.721 28.6%* [26.3%, 30.9%] 

Precision rate 0.89 0.75 12.3%* [0.87, 0.91] 

Recall rate 0.85 0.69 14.9%* [0.83, 0.87] 

F1-score 0.87 0.72 16.1%* [0.85, 0.89] 

 
Experimental results show that the hybrid inference engine demonstrates comprehensive 
performance advantages in the supply chain risk prediction task. Compared with the traditional 
baseline model, the hybrid model achieves significant improvements in four core metrics: 28.6% 
(95% CI: [26.3%, 30.9%]) [5]improvement in accuracy, 12.3% (95% CI: [0.87, 0.91]) 
improvement in precision, 14.9% (95% CI: [0.83, 0.87]) growth in recall, and F1-score 
improvement of 16.1% (95% CI: [0.85, 0.89]). Specifically, the hybrid model explicitly encodes 
structural features such as suppliers' historical default rates through the rule engine 
(SHAP=0.41±0.05),[6] while identifying implicit correlations such as delayed conduction of 
logistics with the help of graph neural network (attention weight up to 0.72), forming a 
complementary efficiency mechanism. Statistical tests show that all boosts are validated by 95% 
confidence intervals, and the hybrid model maintains F1-score stability under 10% noise 
interference (only 2.1% drop vs. 7.8% drop in the baseline), which proves its applicability to 
industrial scenarios. 

4.2. Limitations  
The DSR-BKG fusion framework proposed in this study shows significant advantages in 
practical validation, but there are still the following limitations that need to be further broken 
through: the current parameter configuration of spatio-temporal correlation strength function 
is mainly oriented to the retail industry (with an average supply chain tier ≤ 3), [7]and its 
performance significantly decreases in the manufacturing multilevel supply chain scenarios 
(with an average tier > 5). Experiments show that when the supply chain tiers exceed 5 levels, 
the spatial decay parameter α in the function needs to be adjusted from 1.5 to 2.5 (geographic 
distance sensitivity test based on Haversine's formula)[8], and the temporal decay coefficient 
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needs to be extended to 48 hours (validated by A/B testing)[9]. This finding suggests that the 
model needs to be dynamically calibrated with parameters for industry characteristics, but 
existing methods lack automated calibration mechanisms. The existing temporal decay function 
adopts a fixed threshold, and the model prediction error spikes when the delay in data 
collection due to unexpected events (e.g., natural disasters, sudden policy changes)[10] exceeds 
the threshold. Therefore, an adaptive learning rate mechanism can be introduced to design an 
LSTM-based delay prediction module to dynamically adjust the attenuation coefficient. 

5. Conclusion  

5.1. Research Summary  
In this study, an intelligent decision-making system framework for dynamic market 
environment is constructed by fusing Design Science Research (DSR) theory and Business 
Knowledge Graph (BKG) technology. The system design strictly follows the four-phase path 
(problem definition-solution design-development and implementation-impact evaluation) of 
DSR methodology, and successfully solves the core challenges of incomplete business 
knowledge representation, difficult fusion of heterogeneous data from multiple sources, and 
low efficiency of real-time decision reasoning. Empirical studies show that the system 
demonstrates significant advantages in the supply chain risk prediction task: the risk prediction 
accuracy is improved by 28.6% (up to 92.7%), the decision response speed is shortened to 1.4 
seconds, and the balance between accuracy and interpretability is achieved by the hybrid 
inference engine (F1-score=0.89). 

5.2. Theoretical Contributions  
proposes a DSR-BKG fusion framework, which establishes a structured methodology for the 
design of complex systems through a five-tuple formal model and a two-layer optimization 
strategy, providing a new research paradigm for dynamic decision-making scenarios. We 
design event-triggered knowledge graph dynamic expansion algorithm to achieve real-time 
data-driven graph update (67% reduction in update latency); and develop a hybrid inference 
engine (rule engine + graph neural network) to balance the decision-making efficiency and 
interpretability through weight optimization, which verifies the feasibility of complementary 
efficiency enhancement between the rule base and graph structural features. Through the case 
of retail industry supply chain, we confirm the significant improvement of the system in risk 
prediction and decision-making efficiency, and provide a reusable technical path for the 
engineering practice of intelligent decision-making system.   

5.3. Practical Insights  
The system can monitor key indicators such as supplier performance risk (e.g., historical 
default rate >3 times/year) and logistics timeliness (e.g., regional delay conduction 
probability >0.67) in real time, supporting managers to complete strategy adjustment within a 
second window. Aiming at the characteristics of the retail industry with supply chain tiers ≤ 3, 
the parameter configuration scheme of spatio-temporal correlation strength function is 
proposed to provide a standardized implementation template for similar scenarios. Adopting 
federated learning framework (communication overhead reduced by 24%) with differential 
privacy protection to realize cross-enterprise knowledge collaboration under the premise of 
safeguarding data privacy. 

5.4. Future Research Directions  
Explore the scenario adaptation mechanism of manufacturing multi-level supply chain (level >5) 
and optimize the parameters of spatio-temporal correlation function; study the distributed 
graph neural network architecture to break through the bottleneck of storage and computation 
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of the billion node graph; introduce the adaptive learning rate mechanism and design the 
delayed prediction module based on LSTM, so as to enhance the ability of response to 
unexpected events. 
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