Composite Materials for Automotive Body: Balancing Weight Reduction and Safety
DOI:
https://doi.org/10.54691/6q92dj35Keywords:
Composite Material, Properties, Applications, Material Selection, Safety, Lightweight.Abstract
With the growing number of automobiles, the demands from both government and consumers for fuel economy and automotive safety are also on the rise. To meet these requirements, the article outlines some key properties required for automotive body materials. It delves into the characteristics of fiber-reinforced composites and sandwich structures. For example, it provides data on the impact strength and Young's modulus of Carbon Fiber Reinforced Polymer (CFRP), which is highly useful in selecting materials for the vehicle body. Finally, the article highlights several applications of composite materials in automotive body components, including support structures, bumpers, hoods, and chassis. This article primarily summarizes past research and provides direction for future studies.
Downloads
References
[1] Gardyński, L., Caban, J., & Barta, D. (2018). Research of composite materials used in the construction of vehicle bodywork. Advances in Science and Technology. Research Journal, 12(3).
[2] Alam, M. A., Ya, H. B., Azeem, M., Mustapha, M., Yusuf, M., Masood, F., ... & Ansari, A. H. (2023). Advancements in aluminum matrix composites reinforced with carbides and graphene: A comprehensive review. Nanotechnology Reviews, 12(1), 20230111.
[3] Arumugam, A., & Pramanik, A. (2024). A review on the recent trends in forming composite joints using spot welding variants. Journal of Composites Science, 8(4), 155.
[4] Neu, T. R., Heim, K., Seeliger, W., Kamm, P. H., & García-Moreno, F. (2024). Aluminum Foam Sandwiches: A Lighter Future for Car Bodies. JOM, 76(5), 2619-2630.
[5] Abrar, M. S. U., Ezaz, K. F. N., Hasan, M. J., Pranto, R. I., Alvy, T. A., & Hossain, M. Z. (2024). Speed-dependent impact analysis on a car bumper structure using various materials. Results in Engineering, 21, 101927.
[6] Roylance, D. (2000). Introduction to composite materials. Department of material science and engineering, Massachusetts Institute of Technology, Cambridge.
[7] Khan, F., Hossain, N., Mim, J. J., Rahman, S. M., Iqbal, M. J., Billah, M., & Chowdhury, M. A. (2024). Advances of composite materials in automobile applications–A review. Journal of Engineering Research.
[8] Nega, B. F., Pierce, R. S., Yi, X., & Liu, X. (2022). Characterization of mechanical and damping properties of carbon/jute fibre hybrid SMC composites. Applied Composite Materials, 29(4), 1637-1651.
[9] Zhou, Z., Gao, X., & Zhang, Y. (2022). Research progress on characterization and regulation of forming quality in laser joining of metal and polymer, and development trends of lightweight automotive applications. Metals, 12(10), 1666.
[10] Mahir, F. I., Keya, K. N., Sarker, B., Nahiun, K. M., & Khan, R. A. (2019). A brief review on natural fiber used as a replacement of synthetic fiber in polymer composites. Materials Engineering Research, 1(2), 86-97.
[11] Han, Y. M., & Chen, X. G. (2015). Electrochemical behavior of Al-B4C metal matrix composites in NaCl solution. Materials, 8(9), 6455-6470.
[12] Mayyas, A. T., & Omar, M. (2020). Eco-material selection for lightweight vehicle design. In Energy efficiency and sustainable lighting-a bet for the future. IntechOpen.
[13] Ranjan, R., Rajak, S., & Chatterjee, P. (2023). Material selection for sintered pulley in automobile: An integrated CRITIC-MARCOS model. Reports in Mechanical Engineering, 4(1), 225-240.
[14] Feraboli, P., Masini, A., Taraborrelli, L., & Pivetti, A. (2007). Integrated development of CFRP structures for a topless high performance vehicle. Composite Structures, 78(4), 495-506.
[15] Liu, B., Yang, J., Zhang, X., & Li, X. (2024). Development and Low Cost Control of Glass Fiber Reinforced Thermoplastic Composites-Based Electric Vehicle Tailgate. Journal of Materials Engineering and Performance, 33(18), 9922-9943.
[16] Timchenko, R., Popov, S., Krishko, D., Rajeshwar, G., & Aniskin, A. (2021). Cable-stayed coverings for large-span public buildings. In E3S Web of Conferences (Vol. 280, p. 07008). EDP Sciences.
[17] Rasheed, A., Hagem, R., Khidhir, A., & Hazim, O. (2024). Underwater Robotics: Principles, Components, Modeling, and Control. Al-Rafidain Engineering Journal, 29(1), 154-176.
[18] Ahmad Nadzri, S. N. Z., Hameed Sultan, M. T., Md Shah, A. U., Safri, S. N. A., & Basri, A. A. (2020). A review on the kenaf/glass hybrid composites with limitations on mechanical and low velocity impact properties. Polymers, 12(6), 1285.
[19] Zhu, X., Xiong, C., Yin, J., Yin, D., & Deng, H. (2019). Bending experiment and mechanical properties analysis of composite sandwich laminated box beams. Materials, 12(18), 2959.
[20] Ansori, D. T. A., Prabowo, A. R., Muttaqie, T., Muhayat, N., Laksono, F. B., Tjahjana, D. D. P., ... & Kuswardi, Y. (2022). Investigation of honeycomb sandwich panel structure using aluminum alloy (AL6XN) material under blast loading. Civil Engineering Journal, 8(5), 1046-1068.
[21] Kim, D. H., Jung, K. H., Kim, D. J., Park, S. H., Kim, D. H., Lim, J., ... & Kim, H. S. (2017). Improving pedestrian safety via the optimization of composite hood structures for automobiles based on the equivalent static load method. Composite Structures, 176, 780-789.
[22] Czerwinski, F. (2021). Current trends in automotive lightweighting strategies and materials. Materials, 14(21), 6631.
[23] Valladares Hernando, D., Cuartero Salafranca, J., Ilijevic, S., Malón Litago, H., Ranz Angulo, D., Castejón Herrer, L., & Agustin, X. (2020). Development of a new car C-pillar made of sandwich structures (No. ART-2020-117106).
[24] Lee, H., & Park, H. (2021). Study on structural design and manufacturing of sandwich composite floor for automotive structure. Materials, 14(7), 1732.
[25] Deepak, S., Vigneshwaran, K., & Babu, N. V. (2020, August). Vibration analysis of metal–polymer sandwich structure incorporated in car bonnet. In IOP Conference Series: Materials Science and Engineering (Vol. 912, No. 2, p. 022036). IOP Publishing.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Scientific Journal of Intelligent Systems Research

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.