Research on Remediation Strategies for Heavy Metal-Polluted Mines from the Perspective of Sustainable Development

Gang Sheng
Shaanxi Dijian Hotel Management Group Co., LTD, Xi’an 710075, China

Abstract
The excessive accumulation and leakage of heavy metal elements have severely polluted surrounding ecosystems, posing threats to biodiversity and human health, making the remediation of heavy metal-polluted mines a global focus. Remediation of such mines is a complex and urgent task, and significant results can be achieved through strategies such as comprehensive management, resource recycling, social participation, and long-term monitoring. Continuous innovation in technology and management, strengthened international cooperation, and the promotion of a virtuous cycle of environmental protection and economic development will contribute to the sustainable development of the mining industry and the long-term preservation of the ecological environment. Remediation of heavy metal-polluted mines is a global challenge that requires global cooperation and joint efforts.

Keywords
Heavy Metal Pollution; Mine Environment; Environmental Restoration; Sustainable Development.

1. Introduction
With the rapid development of modern industry, the global demand for mineral resources continues to grow, leading to a booming expansion of mining activities worldwide. Mineral resources serve as a vital pillar for industrial production and economic development, contributing significantly to the prosperity of nations and regions. However, this prosperity comes hand in hand with environmental issues, particularly the growing concern over heavy metal pollution. In the process of mining, waste and tailings often contain abundant heavy metal elements such as lead, zinc, copper, cadmium, among others. Due to their stability and resistance to degradation, these heavy metal elements gradually accumulate in the surrounding soil and water bodies. Over time, they may be released into the environment, causing soil and water pollution and posing severe threats to the local ecological environment and biodiversity [1]. Heavy metal pollution not only directly harms natural ecosystems but also has the potential to enter the human food chain, posing health risks to humans [2, 3, 4]. For instance, long-term ingestion of food containing heavy metals can lead to chronic poisoning, damaging organs like the liver, kidneys, and nervous system, and even increasing the risk of cancer and other chronic diseases. Therefore, the remediation of heavy metal-polluted mines is not only an urgent demand for safeguarding natural environments and biodiversity but also a crucial measure to ensure human health and safety.

2. The Importance of Remediation of Heavy Metal-Polluted Mines
In the implementation of strategies for remediating heavy metal-polluted mines, it is crucial to fully consider geological characteristics, ecological conditions, and social factors to develop scientifically and reasonably feasible remediation plans[5]. Technically, a combination of various methods such as bioremediation, physical remediation, and chemical remediation can
be employed, selecting appropriate techniques based on the extent of pollution. In terms of policies, relevant regulations and standards should be formulated to define responsible parties and remediation obligations, establishing a sound monitoring and assessment mechanism to ensure the implementation and tracking of remediation work.

The remediation of heavy metal-polluted mines is of utmost importance in safeguarding the local ecological environment. The heavy metal pollution generated by mining activities can impact soil, water bodies, and air quality, posing a severe threat to biodiversity and ecological balance. Through the restoration of damaged ecosystems and reduction of heavy metal release and dispersion, the pollution level can be effectively lowered, contributing to maintaining ecological balance, protecting endangered species, and ensuring the stability of ecosystems[6, 7, 8, 9]. The impact of heavy metal-polluted mines extends beyond the environment; it also affects nearby communities and residents (Figure 1). Polluted land and water sources may lead to reduced crop yields or make farming impossible, while water contamination can jeopardize drinking water safety and negatively impact the quality of life for local residents. Moreover, mine closures may result in unemployment issues, adding to social instability. Remediation work can improve local environmental quality, restore the sustainable utilization capacity of land and water resources, enhance community’s capacity for sustainable development, and promote social stability and harmony.

![Figure 1. Effects of heavy metals on plants [10]](image)

Despite requiring significant investment of resources and efforts, the remediation of heavy metal-polluted mines also yields a range of economic benefits. Firstly, through remediation, valuable resources such as heavy metals can be recovered and utilized, reducing the reliance on new mineral resources and resulting in cost savings. Secondly, remediated land and water resources can be restored for agricultural, industrial, or ecotourism use, bringing more economic gains to the local area. Additionally, the undertaking of remediation projects will promote the sustainable development of mining industries, enhance the social responsibility image of enterprises, and boost their competitiveness.

3. Remediation Strategies of Heavy Metal Contaminated Mines

3.1. Comprehensive Management and Synergistic Application of Multiple Technologies

The restoration of heavy metal-polluted mines is a complex engineering task that requires the comprehensive application of various technical measures. The synergistic application of multiple technologies such as vegetation restoration, soil remediation, and water resources management is essential to achieve the stabilization and removal of heavy metals, thereby promoting the restoration and functional recovery of the ecosystem[11]. For instance, the characteristics of plants absorbing heavy metals can be utilized in vegetation restoration,
combined with soil remediation techniques to improve the physicochemical properties of the soil, reducing the mobility of heavy metals and thereby minimizing their migration and release[8].

3.2. **Mine Planning and Ecological Environmental Standards**

During the early stages of mine development, it is crucial to strengthen the environmental impact assessment of mine planning to ensure compliance with environmental protection requirements and development plans. Consideration of ecological environmental protection and restoration requirements should be fully integrated into the planning phase, adopting scientifically sound mining methods to reduce the impact of mining on the ecological environment[12]. Furthermore, establishing ecological environmental standards and restoration criteria, along with clearly defining restoration goals and measures, provides scientific guidance for mine restoration. Restoration strategies should be tailored to the specific characteristics and levels of heavy metal pollution in different mines, integrating restoration with ecological environmental protection throughout the entire process of mine operations.

3.3. **Resource Recycling and Economic Benefits Enhancement**

The restoration of heavy metal-polluted mines should prioritize resource recycling. By adopting resource recovery and reuse technologies, waste and tailings generated during the restoration process may contain recyclable metal elements[10, 13]. Through advanced techniques for recovery and extraction, the demand for primary ore can be reduced, thereby alleviating the environmental pressure of mining. Additionally, promoting green mining development is a sustainable option. Employing green technologies and clean production methods can reduce the environmental impact of mining, achieve a green upgrade of the mining industry, and enhance the competitiveness and social image of enterprises.

3.4. **Social Participation and Win-Win Cooperation**

Enhancing social participation is crucial in the process of mine restoration. Active cooperation with local residents, community organizations, and non-governmental organizations, and giving full consideration to their opinions and needs, is essential to achieve the unity of governance objectives and social benefits. As direct stakeholders affected by the restoration, local residents and communities should participate in the decision-making process, jointly discussing restoration plans to ensure their interests are safeguarded[14, 15]. Furthermore, the collaboration between the government, enterprises, and social organizations is pivotal in driving restoration efforts. The government should play a guiding and supervisory role in legislation and policy-making, enterprises must assume environmental responsibilities, actively promoting restoration work, while social organizations can provide technical support and supervision, fostering a positive and collaborative interaction among all parties.

3.5. **Long-Term Monitoring and Evaluation Mechanism**

The restoration of heavy metal-polluted mines is a lengthy process that requires the establishment of a long-term monitoring and evaluation mechanism. Regular evaluation of the restoration effects, timely identification of problems and risks, and the adoption of corresponding measures are crucial to ensuring the sustained effectiveness of restoration work. Monitoring and evaluation should cover ecological environmental indicators, heavy metal content, soil quality, water quality, and other aspects to comprehensively understand the restoration effects and environmental changes, providing a scientific basis for adjusting and optimizing restoration strategies[1, 5]. Transparently sharing monitoring results with the public allows them to be informed of the progress of restoration and increases societal support and recognition for restoration efforts.
4. Conclusion and Outlook

The restoration of heavy metal-polluted mines is an urgent and complex task that requires the comprehensive application of various technological methods and strengthened social participation and international cooperation. With the continuous growth in global demand for mineral resources and the increasing prominence of environmental issues, the restoration of heavy metal-polluted mines becomes even more crucial. When delving into the strategies for the restoration of such mines, there are several aspects worth further enrichment and research:

4.1. Ecological Risk Assessment and Emergency Response Plan

Before undertaking the restoration of heavy metal-polluted mines, accurate ecological risk assessments of the contaminated areas are necessary. By evaluating the toxicity and migration pathways of different heavy metal elements, the focus and priority for restoration can be determined, and corresponding emergency response plans can be devised. This will enable swift action in case of emergencies, preventing further pollution spread.

4.2. Knowledge Sharing and Technological Innovation

The restoration of heavy metal-polluted mines is a global challenge, and countries should strengthen cooperation in knowledge sharing and technological innovation. By establishing international collaboration platforms to facilitate exchanges among scientists, experts, and research institutions, joint research on solutions and innovative restoration technologies can be conducted (Figure 2). International cooperation can also provide opportunities for countries to learn from each other, promoting continuous progress in mine restoration efforts.

4.3. Public Education and Awareness Enhancement

Enhancing public awareness and understanding of the restoration of heavy metal-polluted mines is crucial for driving restoration efforts. Conducting environmental education activities and promoting the importance and achievements of restoration work can encourage public participation in restoration actions, fostering a positive societal atmosphere of concern and support for the protection of mining ecological environments.

4.4. Improvement of Policies, Regulations, and Supervisory Systems

Establishing sound policies and regulations, clarifying responsible entities and regulatory bodies for mine restoration, and enhancing supervision and management of restoration work are essential. Implementing a robust system for evaluating and assessing restoration projects will ensure the quality and sustainability of restoration efforts. Additionally, using economic incentives and penalties can encourage businesses to actively participate in restoration work.
4.5. Coordinated Social and Economic Development

The restoration of heavy metal-polluted mines not only involves environmental protection but also relates to mining industries and social development. Therefore, restoration strategies should consider the balance between environmental protection and economic development. The government should guide businesses in achieving green mining development and promote the coordinated development of the economy and ecological environment. Furthermore, the restoration of heavy metal-polluted mines may drive local economic development and job opportunities, fostering social stability and prosperity.

References

