The New Requirements for International Seafarers' Comprehensive Quality due to the Large-scale and Intelligent Development of Ships

Wei You

Merchant Marine College, Shanghai Maritime University (SMU), Shanghai, 201306 China

Abstract

The global shipping industry is undergoing significant transformations with the large-scale and intelligent evolution of ships, which poses new demands on the skills and responsibilities of seafarers. This article explores how these trends affect the skill requirements of seafarers, including mastery of advanced technology, data analysis capabilities, safety management, emergency response, and communication and collaboration. As ship sizes increase and intelligent technologies are widely applied, the ways of navigational operations and management are undergoing revolutionary changes. Seafarers must enhance their skills to adapt to the new work environment and meet the rapid changes in the shipping industry. This article aims to provide guidance for seafarer training and education, helping them successfully face these new challenges.

Keywords

Ship Large-scale; Ship Intelligent; Seafarers; Comprehensive Quality.

1. Introduction:

The large-scale and intelligent development of ships is an important trend in the global maritime industry. Technological progress and global trade have driven the expansion of ship sizes and the application of intelligent technologies, which not only change shipping business and port operations but also present new challenges to seafarers. Large ships have improved transportation efficiency, but they also bring new demands for port facilities and the complexity of navigation operations[1]. The automatic navigation systems, remote monitoring, and automated loading and unloading systems of intelligent ships have lightened the workload of seafarers, improved the accuracy and safety of navigation, but they also require seafarers to adapt to the use of new technologies and possess the ability to handle technical failures and emergencies. Seafarers now need to have data analysis and decision-making capabilities to optimize routes, fuel consumption, and cargo loading and unloading plans. In addition, the working environment of seafarers has also changed, requiring stronger communication and teamwork capabilities[2]. Large ships are usually staffed by a multinational crew, requiring effective cross-cultural communication and cooperation. Seafarers need to maintain contact with the shore-based support team to address technical issues and emergencies. This article will discuss how seafarers can enhance their comprehensive qualities through training and education to adapt to the rapid development of navigational technology.

2. Ship Large-scale and Intelligentization Trends

The continuous advancement of science and technology has steered the global shipbuilding industry towards the direction of larger and smarter vessels. These trends not only enhance maritime transport efficiency but also reduce costs while improving environmental standards and safety. The development of these trends is mutually reinforcing and complementary, making their future growth unstoppable. Innovations in ship enlargement and intelligent
technology present new challenges for international seafarers, demanding they provide high-quality service to the maritime transport industry. Larger vessels can increase transport efficiency and reduce the cost per unit of cargo while complying with environmental regulations by cutting energy consumption and emissions. This requires the adoption of more advanced technologies in ship design and construction, such as automation and intelligent systems, to improve operational efficiency and safety. The application of intelligent technology not only enhances the operational efficiency of ships but also strengthens their safety and environmental performance. The development and application of these technologies, in turn, promote the trend of ship enlargement, as intelligence enables better management and operation of large vessels.

2.1. Ship Large-scale

The development trend of ship large-scale reflects the maritime industry’s adaptation to global trade and environmental challenges. With the growth of global trade volume, maritime transport, as a primary mode of international trade, has seen the enhancement of efficiency and environmental standards as key factors driving ship large-scale. Large ships, due to their economies of scale, can effectively reduce the energy consumption and carbon emissions per unit of cargo, meeting environmental requirements. This has driven the shipbuilding industry towards a more environmentally friendly and sustainable direction. At the same time, ship large-scale requires the upgrade of port facilities and management systems to adapt to deeper waters, longer docks, stronger loading and unloading capabilities, and more efficient logistics and traffic management systems. Major global ports are upgrading to meet the needs of large-scale ships, including deepening navigation channels, lengthening docks, and introducing efficient cargo handling systems. As shown in Figure 1, the development of ship large-scale is an inevitable trend for the future, thereby posing higher requirements for international seafarers.

Figure 1. Chart of the three major ship types’ deadweight tonnage changes over time [3]
Container Ships: Container ships are the main type of vessel for transporting containers and are the most utilized for global cargo transportation. As international trade expands, container ships are trending towards larger and more efficient designs to accommodate the needs of mass transportation. Large container ships can carry thousands of standard containers, offering high cargo capacity and transport efficiency.

Tanker Ships: Tanker ships are the primary vessel type for transporting liquid cargo, and the increasing global energy demand has led to their development towards larger and safer designs. Large tankers possess significant oil-carrying capacities, enabling them to transport millions of barrels of crude oil or petroleum products in a single trip.

Bulk Carriers: Bulk carriers are mainly used for transporting bulk goods such as coal, sand, grain, and ores. With the growing global demand for resources, bulk carriers are continuously evolving and expanding. Large bulk carriers have substantial cargo hold volumes and carrying capacities, capable of handling hundreds of thousands to millions of tons of bulk cargo.

2.2. **Ship Intelligence**

Ship intelligence refers to the optimization and intelligent transformation of various systems and functions of ships through the use of advanced information technology, communication technology, and automation technology. This is done to enhance the safety, efficiency, and navigational performance of ships. It includes aspects such as autonomous navigation systems, remote monitoring and control, data analytics and optimization, and automated loading and unloading systems. The goal is to improve the overall operational efficiency, safety, and environmental performance of ships through technological means.

(1) **Autonomous Navigation Systems**

Autonomous navigation systems are a symbol of technological progress in the maritime industry. They integrate advanced sensors and satellite positioning systems to accurately locate the ship’s position and monitor the marine environment. With the integration of artificial intelligence, these systems can process data in real-time, autonomously determine routes and speeds, and achieve highly automated navigation, significantly enhancing the safety and precision of navigation. They can handle complex marine environments, such as avoiding collisions and adapting to weather and current changes, thereby reducing the risk of maritime accidents. Additionally, by optimizing routes and speeds, they reduce fuel consumption and emissions, enhancing economic and environmental performance. Autonomous navigation systems also alleviate the workload of crew members, allowing them to focus more on other critical tasks. In the future, ships may achieve full unmanned operation, completing the entire voyage without direct human operation[4].

(2) **Remote Monitoring and Control**

Remote monitoring and control technology is becoming widespread in shipping, bringing revolutionary changes to ship operations and management. Through sensors, cameras, and other equipment on board, real-time information about the ship, such as its position and speed, is obtained and transmitted to the control center via satellite communication and other advanced technologies, enabling real-time monitoring and decision-making. This enhances the flexibility and safety of ship operations, especially in complex and dangerous sea conditions. The system can also be used for long-term maintenance and monitoring, predicting maintenance needs, and reducing downtime and costs. In the future, with technological development, it may be possible to achieve fully remotely controlled unmanned ships, improving operational efficiency and bringing industry transformation and challenges. The progress of remote monitoring and control technology reflects the evolution of ship operation modes and the nature of seafarers’ work.

(3) **Data Analytics and Optimization**
Data analytics and optimization technologies are crucial in intelligent ships, as they are key to achieving efficient, economical, and environmentally friendly operations. By analyzing ship operation data, such as fuel consumption, machinery status, and cargo conditions, they provide in-depth insights and optimization recommendations. These technologies can be used to identify operational patterns, potential issues, and opportunities for improvement, such as optimizing navigation plans and predicting maintenance needs. Additionally, data analysis can be used for cargo management and handling, as well as environmental impact assessment and improvement. In summary, data analytics and optimization technologies are at the core of intelligent ship development, enhancing operational efficiency and safety, and supporting the sustainable development of the shipping industry.

(4) Automated Loading and Unloading Systems

Automated loading and unloading systems represent a significant breakthrough in intelligent technology for port operations, achieving the efficient handling of goods through automated cranes and other equipment. These systems improve port efficiency, reduce the time ships spend in port, and lower the risk of errors and accidents. The precise control of cargo movement enhances the throughput capacity of large ports and can seamlessly integrate with intelligent ship systems to achieve automation of the logistics chain. If integrated with cargo management systems, it can track and manage goods in real-time, improving logistics transparency. Moreover, the system helps reduce energy consumption and noise pollution, promoting sustainable port development. In the future, ports will achieve higher levels of automation and intelligence, including fully automated terminal operations and logistics management based on artificial intelligence. Automated loading and unloading systems have changed the way port operations are conducted and are key to optimizing the modern logistics chain[5].

3. The Large-scale and Intelligent Ship Technology’s New Demands on the Comprehensive Quality of International Seafarers

With the development of ship enlargement and intelligent technologies, seafarers face increasingly higher professional skill requirements. They need to have an in-depth grasp of navigation knowledge and the ability to operate complex equipment to ensure the safe and efficient navigation of ships. At the same time, seafarers must possess the crisis management skills to quickly respond to emergencies, as well as the team spirit and cross-cultural communication abilities to collaborate effectively with crew members from diverse backgrounds. To adapt to the development of the shipping industry, seafarers need to continuously enhance their professional standards and comprehensive capabilities.

3.1. Enhancement of Advanced Technological Skills

With the rapid advancement of maritime technology, sailors are facing the challenge of having to enhance their advanced technical skills. In today's shipping industry, a vessel is no longer just a means of transportation but has become a highly complex and automated system. Intelligent devices such as automatic navigation systems, remote monitoring systems, and data analysis software have become an indispensable part of modern ships [6]. These systems and devices can improve the safety, efficiency, and environmental friendliness of navigation, but they also require sailors to possess the corresponding technical knowledge and operational skills.

For instance, sailors need to master the effective use of automatic navigation systems, including how to set courses, monitor navigation status, and interpret various data provided by the system. Regarding remote monitoring systems, sailors must not only be able to perform routine operations but also understand how to respond quickly in emergency situations [7]. Moreover, as the level of intelligence increases, sailors also need to acquire the basic knowledge of data
analysis, being able to extract useful information from complex data to guide navigation decisions and ship maintenance. The improvement of these skills is not achieved overnight and requires sailors to continuously learn and practice throughout their careers. Sailor training programs need to be continuously updated to cover the latest ship technologies and operational methods. In addition, sailors also need to improve their understanding and mastery of these advanced devices through practical experience. As technology continues to progress, the role of sailors is also gradually transforming, shifting from traditional physical operations to more technical operations and decision-making, which requires them to possess a broader range of knowledge and skills [8].

3.2. Data Analysis and Decision-Making Abilities

In the operation of intelligent ships, the data analysis and decision-making abilities of seafarers have become increasingly important. Modern ships are equipped with numerous sensors and systems that can collect a large amount of real-time data about the ship’s operating status, environmental conditions, and navigation efficiency. Seafarers need to have the ability to analyze this data to extract key information for guiding navigation plans, maintenance decisions, and emergency responses. They also need to be able to interpret mechanical performance data to predict potential equipment failures and perform maintenance in advance to prevent accidents at sea[9]. Additionally, for maritime safety, seafarers need to be able to quickly analyze complex weather information and traffic conditions to make the right navigation decisions and avoid collisions and other dangers[10].

The enhancement of these data analysis and decision-making abilities depends not only on the learning of professional knowledge but also on continuous practice and experience accumulation in actual work. Seafarers need to learn how to use various data analysis tools and software, and they also need to develop their intuition and understanding of data. The ability to quickly identify key information and make accurate judgments when handling a large amount of real-time data is a core skill that modern seafarers must possess. To this end, shipping companies and training institutions need to provide the necessary training and support to help seafarers adapt to this rapidly changing technological environment. In emergencies, seafarers’ data analysis and decision-making abilities are particularly important. They need to be able to quickly assess situations, such as adverse weather, mechanical failures, or maritime accidents, and quickly formulate response measures based on data analysis results. This requires not only technical knowledge but also rich navigation experience and excellent judgment.

3.3. Safety Management and Emergency Response

With the development of large-scale and intelligent ships, seafarers face more severe challenges in safety management and emergency response. Large-scale ships, due to their size and operational complexity, may pose greater safety risks, such as channel restrictions and port adaptability issues. Intelligent ships increase the requirements for seafarers in terms of technical understanding and operation, especially in handling emergencies. Therefore, seafarers need to have comprehensive safety knowledge, including understanding of new ship technologies and the identification and assessment of various potential maritime risks. Seafarers need to effectively manage these risks, including developing and implementing safety operation plans to ensure the safety of the ship and cargo. In addition, emergency response capabilities are particularly important in modern navigation. Seafarers should have the ability to take quick and effective action in emergencies such as mechanical failures, adverse weather conditions, and maritime accidents. This requires not only good technical knowledge and operational skills but also a strong sense of responsibility and calm judgment. To enhance these capabilities, seafarers should participate in regular safety training and emergency drills to keep their knowledge and skills up to date. These trainings should include the use of the latest safety
equipment and procedures, as well as simulations of response strategies for various emergency situations. With these preparations, seafarers can more effectively protect their own, the ship’s, and cargo’s safety in real emergencies.

3.4. Communication and Teamwork Abilities

The operation and management of a ship is a task that requires a high degree of teamwork. In modern navigation, seafarers not only need to collaborate with their colleagues on board but also communicate effectively with onshore control centers, other maritime vessels, and ports. In a multicultural and multilingual working environment, clear and accurate communication is particularly important to ensure the accurate transmission and understanding of information. Good communication skills are crucial for ensuring the safety and efficiency of ship operations. This includes the ability to clearly convey instructions and information, effectively share important data, and provide timely feedback on issues and concerns. In addition, teamwork ability is an essential quality that seafarers must possess. This not only includes coordinating and collaborating with colleagues in daily work but also teamwork in emergencies to solve problems together. To improve communication and teamwork abilities, seafarers should participate in relevant training and team-building activities. These activities can help seafarers understand different cultures and work styles, improve cross-cultural communication skills, and enhance trust and collaboration within the team. Through these efforts, seafarers can work more effectively in the complex maritime environment and ensure the smooth operation of the ship.

3.5. Continuous Learning and Adaptability

In the rapidly developing shipping industry, continuous learning and adaptability are crucial for seafarers. With the continuous emergence of new technologies and the ongoing changes in industry standards, seafarers need to constantly update their knowledge and skills to adapt to these changes. This adaptability includes not only learning new technologies but also adapting to new operating procedures, safety regulations, and environmental protection measures. Continuous learning and adaptability are not only necessary for the personal development of seafarers but also essential for ensuring the safe and effective operation of ships. In terms of technology, as intelligent and automated technologies continue to develop, seafarers need to master the operation and maintenance methods of these technologies. This may include learning new navigation systems, the use of automated loading and unloading equipment, or the latest environmental protection technologies. In terms of operating procedures, as international regulations and industry standards are updated, seafarers need to adapt to new work procedures and safety regulations, which requires them to continuously update their professional knowledge.

Continuous learning and adaptability are crucial for seafarers, especially in the context of global climate change and marine environmental shifts. Seafarers must understand the impact of these changes on navigation and learn how to respond, such as developing strategies for sailing in extreme weather conditions and adopting environmentally friendly operational methods. To cultivate these capabilities, seafarers should engage in regular training, and shipping companies and training institutions should provide the necessary courses and resources. Seafarers should also actively seek learning opportunities, such as online courses and industry events, to keep their knowledge and skills up to date.

4. Conclusion

The trend towards larger and more intelligent ships is reshaping the maritime industry, requiring seafarers to continuously enhance their technical proficiency, decision-making, safety awareness, communication, and adaptability skills. Shipping companies need to invest in
the training of their seafarers, while international organizations such as the International Maritime Organization (IMO) should promote the standardization of training to meet the industry’s demand for high-quality personnel. Seafarers themselves should also actively engage in learning and updating their knowledge and skills. Ongoing learning and adaptation are key to seafarers maintaining their competitiveness, ensuring navigational safety, and efficiency. Cultivating the comprehensive qualities of seafarers is crucial for the long-term development of the shipping industry.

Acknowledgments

I sincerely thank my patient instructor, Mr./Ms. Li, and my supportive classmates for their constant assistance and care. Your unwavering support has been invaluable. Thank you.

References