Fe3O4@SiO2 Magnetic Nanoparticles Modified with Cysteine: a New Adsorbent for Environmentally Friendly Adsorption/Desorption of Pb(II) ions

Authors

  • Yuanjing Bi
  • Ningyan Sun
  • Ailin Fan
  • Ming Zhang
  • Xiangming Liu
  • Bo Xu
  • Guihong Lan
  • Haiyan Qiu

DOI:

https://doi.org/10.54691/740bst76

Keywords:

Cysteine; Mesoporous Silica; Adsorption; Heavy Metal Ions.

Abstract

In recent years, nanoparticles have become the focus of scientific research because of their wide potential application value. Iron oxides show incredible magnetic saturation, stability, and intuitive properties on the surface, making them ideal for a variety of uses. In this paper, nanometer iron oxide particles are synthesized by co-deposition method, and silica is further used to avoid agglomeration. Functional synthesis of cysteine nanoparticles (FNMs-Cys).The optimum synthesis conditions and adsorption conditions were determined by orthogonal experiments. In addition, the anti-interference and regeneration cycle performance of FNMs-Cys are discussed. The samples were characterized by scanning electron microscope (SEM), X-ray diffractometer (XRD), Fourier transform infrared spectrometer (FTIR), N2 adsorption and desorption automatic specific surface and porosity analyzer (BET), thermogravimetric analysis (TG) and hysteresis loop test (VSM). The adsorption process of Pb2+ by FNMs-Cys accords with quasi-second-order kinetics and Langmuir isothermal adsorption model, which shows that the adsorption is mainly through chemical adsorption of monolayer, In the Langmuir model, the maximum single-layer adsorption capacity of FNMs-Cys for Pb2+ reached 174.85 mg/g. After five cycles of adsorption-desorption regeneration, FNMs-Cys still showed good stability and recyclability. At present, it is of forward-looking significance to study the removal effect of Pb2+ in water by using amino acid modified mesoporous magnetic silica materials in laboratory.

Downloads

Download data is not yet available.

References

Yang, W.-Y.; Zhang, Z.-Y.; Mujaj, B.; Thijs, L.; Staessen, J. A. Environmental Exposure to Lead: Old Myths Never Die. Lancet Public Health 2018. https://doi.org/10.1016/s2468-2667(18)30131-2.

Mramba, A. S.; Ndibewu, P. P.; Sibali, L. L.; Makgopa, K. A Review on Electrochemical Degradation and Biopolymer Adsorption Treatments for Toxic Compounds in Pharmaceutical Effluents. ELECTROANALYSIS 2020, 32 (12), 2615–2634. https://doi.org/10.1002/elan.202060454.

Bezzina, J.; Robshaw, T.; Dawson, R.; Ogden, M. Single Metal Isotherm Study of the Ion Exchange Removal of Cu(II), Fe(II), Pb (II) and Zn(II) from Synthetic Acetic Acid Leachate. CHEMICAL ENGINEERING JOURNAL 2020, 394 (2006-03–01), 1303–1309. https://doi.org/ 10.1016/ j.cej. 2020. 124862.

Kim, J.; Lee, J. E.; Lee, J.; Yu, J. H.; Kim, B. C.; An, K.; Hwang, Y.; Shin, C.-H.; Park, J.-G.; Kim, J.; Hyeon, T. Magnetic Fluorescent Delivery Vehicle Using Uniform Mesoporous Silica Spheres Embedded with Monodisperse Magnetic and Semiconductor Nanocrystals. J. Am. Chem. Soc. 2006. https://doi. org/ 10. 1021/ja0565875.

Lakic, M.; Breijaert, T. C.; Daniel, G.; Svensson, F. G.; Kessler, V. G.; Seisenbaeva, G. A. Uptake and Separation of Rare Earth Elements and Late Transition Metal Cations by Nanoadsorbent Grafted with Diamino Ligands. SEPARATION AND PURIFICATION TECHNOLOGY 2023, 323 (124487). https:// doi.org/10.1016/j.seppur.2023.124487.

Ahmed, M. B.; Zhou, J. L.; Ngo, H. H.; Guo, W.; Chen, M. Progress in the Preparation and Application of Modified Biochar for Improved Contaminant Removal from Water and Wastewater. Bioresource Technol. 2016. https://doi.org/10.1016/j.biortech.2016.05.057.

Sabbarese, C.; Ambrosino, F.; D’Onofrio, A.; Roca, V. Radiological Characterization of Natural Building Materials from the Campania Region (Southern Italy). Constr. Build. Mater. 2020. https://doi.org/10.1016/j.conbuildmat.2020.121087.

Chen, J. H.; Xing, H. T.; Guo, H. X.; Li, G. P.; Weng, W.; Hu, S. R. Preparation, Characterization and Adsorption Properties of a Novel 3-Aminopropyltriethoxysilane Functionalized Sodium Alginate Porous Membrane Adsorbent for Cr(III) Ions. J. Hazard. Mater. 2013. https://doi. org/10. 1016/ j.jhazmat.2013.01.042.

Kyzas, G. Z.; Kostoglou, M.; Vassiliou, A. A.; Lazaridis, N. K. Treatment of Real Effluents from Dyeing Reactor: Experimental and Modeling Approach by Adsorption onto Chitosan. Chem. Eng. J. 2011. https://doi.org/10.1016/j.cej.2011.01.026.

Jafari Eskandari, M.; Hasanzadeh, I. Size-Controlled Synthesis of Fe3O4 Magnetic Nanoparticles via an Alternating Magnetic Field and Ultrasonic-Assisted Chemical Co-Precipitation. Mater. Sci. Eng. B 2021. https://doi.org/10.1016/j.mseb.2021.115050.

Ganapathe, L. S.; Mohamed, M. A.; Mohamad Yunus, R.; Berhanuddin, D. D. Magnetite (Fe3O4) Nanoparticles in Biomedical Application: From Synthesis to Surface Functionalisation. Magnetochemistry 2020. https://doi.org/10.3390/magnetochemistry6040068.

Samadi, M. S.; Shokrollahi, H.; Zamanian, A. The Magnetic-Field-Assisted Synthesis of the Co-Ferrite Nanoparticles via Reverse Co-Precipitation and Their Magnetic and Structural Properties. Mater. Chem. Phys. 2018. https://doi.org/10.1016/j.matchemphys.2018.05.067.

Zhao, X.; Li, J.; Cui, X.; Bi, Y.; Han, X. Construction of Novel 3D ZnO Hierarchical Structure with Fe3O4 Assist and Its Enhanced Visible Light Photocatalytic Performance. J. Environ. Chem. Eng. 2020. https:// doi.org/10.1016/j.jece.2019.103548.

Chang, Q.; Zhu, L.; Yu, C.; Tang, H. Synthesis and Properties of Magnetic and Luminescent Fe3O4/SiO2/Dye/SiO2 Nanoparticles. J. Lumin. 2008. https://doi.org/ 10.1016/ j.jlumin. 2008. 05. 014.

Zandipak, R.; Sobhanardakani, S. Novel Mesoporous Fe 3O 4/SiO 2/CTAB–SiO 2 as an Effective Adsorbent for the Removal of Amoxicillin and Tetracycline from Water. Clean Techn. Environ. Policy 2018. https: //doi.org/10.1007/s10098-018-1507-5.

Vojoudi, H.; Badiei, A.; Bahar, S.; Mohammadi Ziarani, G.; Faridbod, F.; Ganjali, M. R. A New Nano-Sorbent for Fast and Efficient Removal of Heavy Metals from Aqueous Solutions Based on Modification of Magnetic Mesoporous Silica Nanospheres. J. Magn. Magn. Mater. 2017. https://doi. org/ 10.1016/j.jmmm.2017.05.065.

Liu, D.; Pan, J.; Tang, J.; Lian, N. Preparation of Polymethacrylate Monolith Modified with Cysteine for the Determination of Cr(Iii) Ions. RSC Adv. 2018. https://doi.org/10.1039/c8ra01287c.

Fan, H.-L.; Li, L.; Zhou, S.-F.; Liu, Y.-Z. Continuous Preparation of Fe 3 O 4 Nanoparticles Combined with Surface Modification by L -Cysteine and Their Application in Heavy Metal Adsorption. Ceram. Int. 2016. https://doi.org/10.1016/j.ceramint.2015.11.098.

Zou, X.; Yin, Y.; Zhao, Y.; Chen, D.; Dong, S. Synthesis of Ferriferrous Oxide/l-Cysteine Magnetic Microspheres and Their Adsorption Capacity for Pb (II) Ions. Mater. Lett. 2015. https:// doi.org/ 10.1016/j.matlet.2015.02.133.

Abou El-Reash, Y. G. Magnetic Chitosan Modified with Cysteine-Glutaraldehyde as Adsorbent for Removal of Heavy Metals from Water. J. Environ. Chem. Eng. 2016. https://doi. org/10. 1016/ j.jece.2016.08.014.

Deng, Y.; Qi, D.; Deng, C.; Zhang, X.; Zhao, D. Superparamagnetic High-Magnetization Microspheres with an Fe3O4@SiO2 Core and Perpendicularly Aligned Mesoporous SiO2 Shell for Removal of Microcystins. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY 2008, 130 (1), 28-+. https:// doi. org/10.1021/ja0777584.

Wang, J.; Guo, X. Adsorption Kinetic Models: Physical Meanings, Applications, and Solving Methods. JOURNAL OF HAZARDOUS MATERIALS 2020, 390. https://doi.org/10.1016/j.jhazmat.2020.122156.

Kilincer, M.; Saygin, H.; Ozyurek, M.; Baysal, A. Sorption of Thiamin (Vitamin B1) onto Micro (Nano)Plastics: pH Dependence and Sorption Models. J. Environ. Sci. Health Part A 2023. https:// doi. org/10.1080/10934529.2023.2216123.

O.O. Zhokh; A.I. Trypolskyi; P.E. Strizhak. Discrimination of a Chemical Kinetic Mechanism for Heterogeneously Catalyzed Reactions Using Intraparticle Diffusion. Chem. Eng. J. 2023. https:// doi. org/10.1016/j.cej.2023.145729.

Araujo, C. S. T.; Almeida, I. L. S.; Rezende, H. C.; Marcionilio, S. M. L. O.; Leon, J. J. L.; de Matos, T. N. Elucidation of Mechanism Involved in Adsorption of Pb(II) onto Lobeira Fruit (Solanum Lycocarpum) Using Langmuir, Freundlich and Temkin Isotherms. MICROCHEMICAL JOURNAL 2018, 137 (2018-02–20), 348–354. https://doi.org/10.1016/j.microc.2017.11.009.

Hu, Q.; Zhang, Z. Application of Dubinin–Radushkevich Isotherm Model at the Solid/Solution Interface: A Theoretical Analysis. J. Mol. Liq. 2019. https://doi.org/10.1016/j.molliq.2019.01.005.

Fenti, A.; Iovino, P.; Salvestrini, S. Some Remarks on "A Critical Review of the Estimation of the Thermodynamic Parameters on Adsorption Equilibria. Wrong Use of Equilibrium Constant in the Van’t Hoof Equation for Calculation of Thermodynamic Parameters of Adsorption" - Journal of Molecular Liquids 273 (2019) 425-434. JOURNAL OF MOLECULAR LIQUIDS 2019, 276, 529–530. https://doi.org/10.1016/j.molliq.2018.12.019.

Ma, J.; Sun, N.; Wang, C.; Xue, J.; Qiang, L. Facile Synthesis of Novel Fe 3 O 4 @SiO 2 @mSiO 2 @TiO 2 Core-Shell Microspheres with Mesoporous Structure and Their Photocatalytic Performance. J. Alloys Compd. 2018. https://doi.org/10.1016/j.jallcom.2018.02.005.

Liu, H.; Ji, S.; Yang, H.; Zhang, H.; Tang, M. Ultrasonic-Assisted Ultra-Rapid Synthesis of Monodisperse Meso-SiO2@Fe3O4 Microspheres with Enhanced Mesoporous Structure. Ultrason. Sonochem. 2013. https://doi.org/10.1016/j.ultsonch.2013.08.010.

Yang, P.; Huang, S.; Kong, D.; Lin, J.; Fu, H. Luminescence Functionalization of SBA-15 by YVO4:Eu3+ as a Novel Drug Delivery System. Inorg. Chem. 2007. https://doi.org/10.1021/ic0622959.

Huang, J.; Ye, M.; Qu, Y.; Chu, L.; Chen, R.; He, Q.; Xu, D. Pb (II) Removal from Aqueous Media by EDTA-Modified Mesoporous Silica SBA-15. J. Colloid Interface Sci. 2012. https://doi.org/ 10.1016/ j.jcis. 2012. 06.054.

Lee, M.-E.; Park, J. H.; Chung, J. W. Comparison of the Lead and Copper Adsorption Capacities of Plant Source Materials and Their Biochars. J. Environ. Manag. 2019. https://doi. org/10. 1016/ j.jenvman. 2019. 01.100.

Yang, Y.; Shan, R.; Xiao, Y.; Zhao, F.; Yuan, H.; Chen, Y. Effect of CeO2-Reinforcement on Pb Absorption by Coconut Coir-Derived Magnetic Biochar. Int. J. Mol. Sci. 2023. https://doi.org/ 10.3390/ ijms24031974.

Chung, J.; Chun, J.; Lee, J.; Lee, S. H.; Lee, Y. J.; Hong, S. W. Sorption of Pb(II) and Cu(II) onto Multi-Amine Grafted Mesoporous Silica Embedded with Nano-Magnetite: Effects of Steric Factors. J. Hazard. Mater. 2012. https://doi.org/10.1016/j.jhazmat.2012.08.063.

Zhang, Y.; Bai, L.; Zhou, W.; Lu, R.; Gao, H.; Zhang, S. Superior Adsorption Capacity of Fe3O4@nSiO2@mSiO2 Core-Shell Microspheres for Removal of Congo Red from Aqueous Solution. J. Mol. Liq. 2016. https://doi.org/10.1016/j.molliq.2016.02.096.

Wu, Q.; Wang, D.; Chen, C.; Peng, C.; Cai, D.; Wu, Z. Fabrication of Fe3O4/ZIF-8 Nanocomposite for Simultaneous Removal of Copper and Arsenic from Water/Soil/Swine Urine. J. Environ. Manag. 2021. https://doi.org/10.1016/j.jenvman.2021.112626.

Rafigh, S. M.; Heydarinasab, A. Mesoporous Chitosan–SiO2 Nanoparticles: Synthesis, Characterization, and CO2 Adsorption Capacity. ACS Sustain. Chem. Eng. 2017. https://doi.org/ 10. 1021 / acssuschemeng.7b02388.

Rafigh, S. M.; Heydarinasab, A. Mesoporous Chitosan–SiO2 Nanoparticles: Synthesis, Characterization, and CO2 Adsorption Capacity. ACS Sustain. Chem. Eng. 2017. https://doi.org/ 10. 1021/ acssuschemeng.7b02388.

Nushin Ettekali; Somaiyeh Allahyari; Nader Rahemi; Fahime Abedini. One-Pot Oxidative-Adsorptive Desulfurization of Model and Real Fuel Using Micro-Mesoporous SiO2 Aerogel Supported MoO3. Micropor. Mesopor. Mater. 2021. https://doi.org/10.1016/j.micromeso.2021.111376.

Lu, W.; Lu, H.; Zhang, Z. TiO2-SiO2 Supported MnWO x Catalysts by Liquid-Phase Deposition for Low-Temperature NH3-SCR. Royal Soc. Open Sci. 2019. https://doi.org/10.1098/rsos.180669.

Du, C.; Song, Y.; Shi, S.; Jiang, B.; Yang, J.; Xiao, S. Preparation and Characterization of a Novel Fe3O4-Graphene-Biochar Composite for Crystal Violet Adsorption. Sci. Total Environ. 2019. https:// doi.org /10.1016/j.scitotenv.2019.134662.

Lunde, P. J.; Kester, F. L. Chemical and Physical Gas Adsorption in Finite Multimolecular Layers. Chem. Eng. Sci. 1975. https://doi.org/10.1016/0009-2509(75)85027-5.

Heidari, A.; Younesi, H.; Mehraban, Z. Removal of Ni(II), Cd(II), and Pb(II) from a Ternary Aqueous Solution by Amino Functionalized Mesoporous and Nano Mesoporous Silica. Chem. Eng. J. 2009. https: //doi.org/10.1016/j.cej.2009.06.016.

Dinh, V.-P.; Le, N.-C.; Tuyen, L. A.; Hung, N. Q.; Nguyen, V.-D.; Nguyen, N.-T. Insight into Adsorption Mechanism of Lead(II) from Aqueous Solution by Chitosan Loaded MnO 2 Nanoparticles. Mater. Chem. Phys. 2018. https://doi.org/10.1016/j.matchemphys.2017.12.071.

Anbia, M.; Lashgari, M. Synthesis of Amino-Modified Ordered Mesoporous Silica as a New Nano Sorbent for the Removal of Chlorophenols from Aqueous Media. Chem. Eng. J. 2009. https://doi. org/ 10.1016/j.cej.2009.02.023.

Chen, Y.; Yang, Z.; Zhang, Q.; Fu, D.; Chen, P.; Li, R.; Liu, H.; Wang, Y.; Liu, Y.; Lv, W.; Liu, G. Effect of Tartaric Acid on the Adsorption of Pb (Ⅱ) via Humin: Kinetics and Mechanism. J. Taiwan Inst. Chem. E. 2020. https://doi.org/10.1016/j.jtice.2019.11.012.

Repo, E.; Warchoł, J. K.; Bhatnagar, A.; Sillanpää, M. Heavy Metals Adsorption by Novel EDTA-Modified Chitosan–Silica Hybrid Materials. J. Colloid Interface Sci. 2011. https://doi.org/ 10.1016/ j.jcis. 2011.02.059.

Song, Q.; Fang, Y.; Liu, Z.; Li, L.; Wang, Y.; Liang, J.; Huang, Y.; Lin, J.; Hu, L.; Zhang, J.; Tang, C. The Performance of Porous Hexagonal BN in High Adsorption Capacity towards Antibiotics Pollutants from Aqueous Solution. Chem. Eng. J. 2017. https://doi.org/10.1016/j.cej.2017.05.057.

Li, M.; Qin, X.; Cui, J.; Guo, R.; Guo, C.; Wang, Z.; Li, T. Three-Dimensional Electro-Fenton Degradation for Fulvic Acids with Cu-Fe Bimetallic Aerogel-like Carbon as Particle Electrode and Catalyst: Electrode Preparation, Operation Parameter Optimization and Mechanism. J. Environ. Chem. Eng. 2021. https://doi.org/10.1016/j.jece.2021.105573.

Madrid, J. F.; Nuesca, G. M.; Abad, L. V. Amine Functionalized Radiation-Induced Grafted Water Hyacinth Fibers for Pb2+, Cu2+ and Cr3+ Uptake. Radiat. Phys. Chem. 2014. https://doi.org/ 10. 1016/j.radphyschem.2013.12.009.

Beyhan Kocadagistan; Kubra Oksuz. Pb (II) Recovery by Modified Tuffite: Adsorption, Desorption, and Kinetic Study. Adsorp. Sci. Technol. 2022. https://doi.org/10.1155/2022/7195777.

Safri, A.; Fletcher, A. J.; Abdel-Halim, E.; Ismail, M. A.; Hashem, A. Calligonum Crinitum as a Novel Sorbent for Sorption of Pb(II) from Aqueous Solutions: Thermodynamics, Kinetics, and Isotherms. J. Polym. Environ. 2020. https://doi.org/10.1007/s10924-020-01975-6.

Senol-Arslan, D. Isotherms, Kinetics and Thermodynamics of Pb(Ii) Adsorption by Crosslinked Chitosan/Sepiolite Composite. Polym. Bull. 2021. https://doi.org/10.1007/s00289-021-03688-9.

Zhang, F.; Zhu, Z.; Dong, Z.; Cui, Z.; Wang, H.; Hu, W.; Zhao, P.; Wang, P.; Wei, S.; Li, R.; Ma, J. Magnetically Recoverable Facile Nanomaterials: Synthesis, Characterization and Application in Remediation of Heavy Metals. Microchem. J. 2011. https://doi.org/10.1016/j.microc.2011.03.005.

Zhang, W.; Song, J.; He, Q.; Wang, H.; Lyu, W.; Feng, H.; Xiong, W.; Guo, W.; Wu, J.; Chen, L. Novel Pectin Based Composite Hydrogel Derived from Grapefruit Peel for Enhanced Cu(II) Removal. J. Hazard. Mater. 2019. https://doi.org/10.1016/j.jhazmat.2019.121445.

Beagan, A. M. Investigating Methylene Blue Removal from Aqueous Solution by Cysteine-Functionalized Mesoporous Silica. J. Chem. 2021. https://doi.org/10.1155/2021/8839864.

Kandah, M. I.; Meunier, J.-L. Removal of Nickel Ions from Water by Multi-Walled Carbon Nanotubes. Journal of hazardous materials 2007, 146 (1–2), 283–288. https://doi.org/ 10.1016/ j.jhazmat. 2006. 12.019.

Downloads

Published

2024-03-21

Issue

Section

Articles

How to Cite

Bi, Y., Sun, N., Fan, A., Zhang, M., Liu, X., Xu, B., Lan, G., & Qiu, H. (2024). Fe3O4@SiO2 Magnetic Nanoparticles Modified with Cysteine: a New Adsorbent for Environmentally Friendly Adsorption/Desorption of Pb(II) ions. Scientific Journal of Technology, 6(3), 46-70. https://doi.org/10.54691/740bst76