Bulk Nanobubbles Unveiled: Insights into Their Formation, Characteristics, and Applications
DOI:
https://doi.org/10.6911/WSRJ.202411_10(11).0002Keywords:
Bulk nanobubbles, stability, applications.Abstract
Nanobubbles, particularly bulk nanobubbles, are gas-filled cavities suspended within a liquid. Recently, bulk nanobubbles have garnered significant interest due to their distinctive nanoscale physical properties. While traditional gas diffusion theories and Laplace pressure suggest that nanobubbles should dissolve within a few microseconds, experimental observations have shown that they can persist in solution for hours or even days. This exceptional stability and extended lifespan have made bulk nanobubbles a focal point for numerous research groups globally. In this paper, we explore the historical development of research on bulk nanobubbles, examine their characteristics along with current techniques for their generation and detection, and assess the validity of stability theories related to bulk nanobubbles. Additionally, we highlight key applications of bulk nanobubbles across various fields.
Downloads
References
[1] Harvey, E.; Barnes, D.; McElroy, W.; Whiteley, A.; Pease, D.; Cooper, K. Bubble formation in animals. I. Physical factors. Journal of Cellular and Comparative Physiology 2005, 24, 1-22.
[2] Epstein, P. S.; Plesset, M. S. On the stability of gas bubbles in liquid-gas solutions. The Journal of Chemical Physics 1950, 18 (11), 1505-1509.
[3] Parker, J. L.; Claesson, P. M.; Attard, P. Bubbles, cavities, and the long-ranged attraction between hydrophobic surfaces. The Journal of Physical Chemistry 1994, 98 (34), 8468-8480.
[4] Lou, S.-T.; Ouyang, Z.-Q.; Zhang, Y.; Li, X.-J.; Hu, J.; Li, M.-Q.; Yang, F.-J. Nanobubbles on solid surface imaged by atomic force microscopy. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena 2000, 18 (5), 2573-2575.
[5] Ishida, N.; Inoue, T.; Miyahara, M.; Higashitani, K. Nano bubbles on a hydrophobic surface in water observed by tapping-mode atomic force microscopy. Langmuir 2000, 16 (16), 6377-6380.
[6] Borkent, B. M.; Dammer, S. M.; Schonherr, H.; Vancso, G. J.; Lohse, D. Superstability of surface nanobubbles. Phys Rev Lett 2007, 98 (20), 204502.
[7] Zhang, X. H.; Zhang, X. D.; Lou, S. T.; Zhang, Z. X.; Sun, J. L.; Hu, J. Degassing and temperature effects on the formation of nanobubbles at the mica/water interface. Langmuir 2004, 20 (9), 3813-3815.
[8] Zhang, X. H.; Khan, A.; Ducker, W. A. A nanoscale gas state. Phys Rev Lett 2007, 98 (13), 136101.
[9] Alheshibri, M.; Qian, J.; Jehannin, M.; Craig, V. S. J. A history of nanobubbles. Langmuir 2016, 32 (43), 11086-11100.
[10] Lohse, D.; Zhang, X. Surface nanobubbles and nanodroplets. Reviews of Modern Physics 2015, 87 (3), 981-1035.
[11] Liu, Y.; Zhang, X. A review of recent theoretical and computational studies on pinned surface nanobubbles*. Chinese Physics B 2018, 27 (1), 014401.
[12] Zhang, X. H.; Zhang, X.; Sun, J.; Zhang, Z.; Li, G.; Fang, H.; Xiao, X.; Zeng, X.; Hu, J. Detection of novel gaseous states at the highly oriented pyrolytic graphite−water interface. Langmuir 2007, 23 (4), 1778-1783.
[13] Zhang, L.; Zhang, X.; Fan, C.; Zhang, Y.; Hu, J. Nanoscale multiple gaseous layers on a hydrophobic surface. Langmuir 2009, 25 (16), 8860-8864.
[14] Yasui, K.; Tuziuti, T.; Kanematsu, W.; Kato, K. Dynamic equilibrium model for a bulk nanobubble and a microbubble partly covered with hydrophobic material. Langmuir 2016, 32 (43), 11101-11110.
[15] Weijs, J. H.; Seddon, J. R.; Lohse, D. Diffusive shielding stabilizes bulk nanobubble clusters. Chemphyschem 2012, 13 (8), 2197-2204.
[16] Yasui, K.; Tuziuti, T.; Kanematsu, W. Mysteries of bulk nanobubbles (ultrafine bubbles); stability and radical formation. Ultrasonics Sonochemistry 2018, 48, 259-266.
[17] Meegoda, J. N.; Hewage, S. A.; Batagoda, J. H. Application of the diffused double layer theory to nanobubbles. Langmuir 2019, 35 (37), 12100-12112.
[18] Tan, B. H.; An, H.; Ohl, C. D. How bulk nanobubbles might survive. Phys Rev Lett 2020, 124 (13), 134503.
[19] Wang, Y.; Shen, Z.; Guo, Z.; Hu, J.; Zhang, Y. Effects of nanobubbles on peptide self-assembly. Nanoscale 2018, 10 (42), 20007-20012.
[20] Zhang, L.; Zhang, Y.; Zhang, X.; Li, Z.; Shen, G.; Ye, M.; Fan, C.; Fang, H.; Hu, J. Electrochemically controlled formation and growth of hydrogen nanobubbles. Langmuir 2006, 22 (19), 8109-8113.
[21] German, S. R.; Chen, Q.; Edwards, M. A.; White, H. S. Electrochemical measurement of hydrogen and nitrogen nanobubble lifetimes at pt nanoelectrodes. Journal of The Electrochemical Society 2016, 163 (4), H3160-H3166.
[22] Chen, Q.; Wiedenroth, H. S.; German, S. R.; White, H. S. Electrochemical nucleation of stable n2 nanobubbles at pt nanoelectrodes. Journal of the American Chemical Society 2015, 137 (37), 12064-12069.
[23] Wang, Y.; Bhushan, B. Boundary slip and nanobubble study in micro/nanofluidics using atomic force microscopy. Soft Matter 2010, 6 (1), 29-66.
[24] Azevedo, A.; Oliveira, H.; Rubio, J. Bulk nanobubbles in the mineral and environmental areas: Updating research and applications. Advances in Colloid and Interface Science 2019, 271, 101992.
[25] Minamikawa, K.; Makino, T. Oxidation of flooded paddy soil through irrigation with water containing bulk oxygen nanobubbles. Science of The Total Environment 2020, 709, 136323.
[26] Zhou, Y.; Li, Y.; Liu, X.; Wang, K.; Muhammad, T. Synergistic improvement in spring maize yield and quality with micro/nanobubbles water oxygation. Scientific Reports 2019, 9 (1), 5226.
[27] Endo-Takahashi, Y.; Negishi, Y. Microbubbles and nanobubbles with ultrasound for systemic gene delivery. Pharmaceutics 2020, 12, 964.
[28] Johnson, B. D.; Cooke, R. C. Generation of stabilized microbubbles in seawater. Science 1981, 213 (4504), 209-211.
[29] Glaser, D. A. Some effects of ionizing radiation on the formation of bubbles in liquids. Physical Review 1952, 87 (4), 665-665.
[30] Yount, D. E.; Gillary, E. W.; Hoffman, D. C. A microscopic investigation of bubble formation nuclei. The Journal of the Acoustical Society of America 1984, 76 (5), 1511-1521.
[31] Bunkin, N.; Bunkin, F. V. Bubstons-stable gaseous bubbles in strongly dilute electrolytic solutions. Sov. Phys. JETP 1992, 74, 271-276.
[32] Bunkin, N. F.; Kochergin, A. V.; Lobeyev, A. V.; Ninham, B. W.; Vinogradova, O. I. Existence of charged submicrobubble clusters in polar liquids as revealed by correlation between optical cavitation and electrical conductivity. Colloids and Surfaces A: Physicochemical and Engineering Aspects 1996, 110 (2), 207-212.
[33] Cho, S.-H.; Kim, J. W.; Chun, J.-H.; Kim, J.-D. Ultrasonic formation of nanobubbles and their zeta-potentials in aqueous electrolyte and surfactant solutions. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2005, 269, 28-34.
[34] Kukizaki, M.; Goto, M. Size control of nanobubbles generated from shirasu-porous-glass (spg) membranes. Journal of Membrane Science 2006, 281 (1), 386-396.
[35] Jin, F.; Li, J.; Ye, X.; Wu, C. Effects of ph and ionic strength on the stability of nanobubbles in aqueous solutions of α-cyclodextrin. The journal of physical chemistry. B 2007, 111, 11745-11749.
[36] Jin, F.; Ye, X.; Wu, C. Observation of kinetic and structural scalings during slow coalescence of nanobubbles in an aqueous solution. The Journal of Physical Chemistry B 2007, 111 (46), 13143-13146.
[37] Ohgaki, K.; Khanh, N.; Joden, Y.; Tsuji, A.; Nakagawa, T. Physicochemical approach to nanobubble solutions. Chemical Engineering Science - CHEM ENG SCI 2010, 65, 1296-1300.
[38] Uchida, T.; Oshita, S.; Ohmori, M.; Tsuno, T.; Soejima, K.; Shinozaki, S.; Take, Y.; Mitsuda, K. Transmission electron microscopic observations of nanobubbles and their capture of impurities in wastewater. Nanoscale Research Letters 2011, 6 (1), 295.
[39] Jia, M.; Farid, M. U.; Kharraz, J. A.; Kumar, N. M.; Chopra, S. S.; Jang, A.; Chew, J.; Khanal, S. K.; Chen, G.; An, A. K. Nanobubbles in water and wastewater treatment systems: Small bubbles making big difference. Water Research 2023, 245, 120613.
[40] Uchida, T.; Oshita, S.; Ohmori, M.; Tsuno, T.; Soejima, K.; Shinozaki, S.; Take, Y.; Mitsuda, K. Transmission electron microscopic observations of nanobubbles and their capture of impurities in wastewater. Nanoscale research letters 2011, 6, 295.
[41] Ushikubo, F. Y.; Enari, M.; Furukawa, T.; Nakagawa, R.; Makino, Y.; Kawagoe, Y.; Oshita, S. Zeta-potential of micro- and/or nano-bubbles in water produced by some kinds of gases. IFAC Proceedings Volumes 2010, 43 (26), 283-288.
[42] Agarwal, A.; Ng, J.; Liu, Y. Principle and applications of microbubble and nanobubble technology for water treatment. Chemosphere 2011, 84, 1175-1180.
[43] Ahmed, A. K. A.; Sun, C.; Hua, L.; Zhang, Z.; Zhang, Y.; Zhang, W.; Marhaba, T. Generation of nanobubbles by ceramic membrane filters: The dependence of bubble size and zeta potential on surface coating, pore size and injected gas pressure. Chemosphere 2018, 203, 327-335.
[44] Demangeat, J.-L. Gas nanobubbles and aqueous nanostructures: The crucial role of dynamization. Homeopathy 2015, 104.
[45] Zhou, C.; Cleland, D.; Snell, J.; Qi, W.; Randolph, T.; Carpenter, J. Formation of stable nanobubbles on reconstituting lyophilized formulations containing trehalose. Journal of Pharmaceutical Sciences 2016, 105.
[46] Liu, S.; Oshita, S.; Makino, Y.; Wang, Q.; Kawagoe, y.; Uchida, T. Oxidative capacity of nanobubbles and its effect on seed germination. ACS Sustainable Chemistry & Engineering 2015, 4.
[47] Fan, M.; Tao, D.; Honaker, R.; Luo, Z. Nanobubble generation and its application in froth flotation (part i): Nanobubble generation and its effects on properties of microbubble and millimeter scale bubble solutions. Mining Science and Technology (China) 2010, 20, 1-19.
[48] Wu, C.; Nesset, K.; Masliyah, J.; Xu, Z. Generation and characterization of submicron size bubbles. Advances in colloid and interface science 2012, 179-182, 123-132.
[49] Ahmadi, R.; Darban, A. K. Modeling and optimization of nano-bubble generation process using response surface methodology. International Journal of NanoScience and Nanotechnology 2013, 9, 151-162.
[50] Ahmadi, R.; Khodadadi, D. A.; Abdollahy, M.; Fan, M. Nano-microbubble flotation of fine and ultrafine chalcopyrite particles. International Journal of Mining Science and Technology 2014, 24 (4), 559-566.
[51] Ang, X.; Truong, T.; Bhandari, B. Effect of carbonation of supersaturated lactose solution on crystallisation behaviour of alpha-lactose monohydrate. Food Biophysics 2017, 12.
[52] Kikuchi, K.; Nagata, S.; Tanaka, Y.; Saihara, Y.; Ogumi, Z. Characteristics of hydrogen nanobubbles in solutions obtained with water electrolysis. Journal of Electroanalytical Chemistry 2007, 600 (2), 303-310.
[53] Takenouchi, T. Behavior of hydrogen nanobubbles in alkaline electrolyzed water and its rinse effect for sulfate ion remained on nickel-plated surface. Journal of Applied Electrochemistry 2010, 40 (4), 849-854.
[54] Wu, C.; Nesset, K.; Masliyah, J.; Xu, Z. Generation and characterization of submicron size bubbles. Advances in Colloid and Interface Science 2012, 179-182, 123-132.
[55] Zhu, J.; An, H.; Alheshibri, M.; Liu, L.; Terpstra, P. M. J.; Liu, G.; Craig, V. S. J. Cleaning with bulk nanobubbles. Langmuir 2016, 11203-11211.
[56] Zhang, L.; Qiu, J.; Shuo, W.; Wang, X.; Lei, W.; Zhao, H.; hu, J.; Zou, Z.; Dong, Y. Formation and stability of bulk nanobubbles generated by ethanol–water exchange. ChemPhysChem 2017, 18.
[57] Millare, J.; Basilia, B. Nanobubbles from ethanol-water mixtures: Generation and solute effects via solvent replacement method. ChemistrySelect 2018, 3, 9268-9275.
[58] Millare, J. C.; Basilia, B. A. Dispersion and electrokinetics of scattered objects in ethanol-water mixtures. Fluid Phase Equilibria 2019, 481, 44-54.
[59] Bunkin, N. F.; Shkirin, A. V.; Ninham, B. W.; Chirikov, S. N.; Chaikov, L. L.; Penkov, N. V.; Kozlov, V. A.; Gudkov, S. V. Shaking-induced aggregation and flotation in immunoglobulin dispersions: Differences between water and water–ethanol mixtures. ACS Omega 2020, 5 (24), 14689-14701.
[60] Chen, M.; Peng, L.; Qiu, J.; Luo, K.; Liu, D.; Han, P. Monitoring of an ethanol–water exchange process to produce bulk nanobubbles based on dynamic light scattering. Langmuir 2020, 36 (34), 10069-10073.
[61] Lou, S.; Ouyang, Z.-Q.; Zhang, y.; Li, X.-J.; hu, J.; Li, M.-Q.; Yang, F.-J. Nanobubbles on solid surface imaged by atomic force microscopy. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures 2000, 18, 2573-2575.
[62] Walczyk, W.; Schönherr, H. Characterization of the interaction between afm tips and surface nanobubbles. Langmuir 2014, 30 (24), 7112-7126.
[63] Nirmalkar, N.; Pacek, A. W.; Barigou, M. Interpreting the interfacial and colloidal stability of bulk nanobubbles. Soft Matter 2018, 14 (47), 9643-9656.
[64] Ma, X.-t.; Li, M.-b.; Sun, C. Measurement and characterization of bulk nanobubbles by nanoparticle tracking analysis method. Journal of Hydrodynamics 2022, 34 (6), 1121-1133.
[65] Elmahdy, A. M.; Mirnezami, M.; Finch, J. A. Zeta potential of air bubbles in presence of frothers. International Journal of Mineral Processing 2008, 89 (1), 40-43.
[66] Dressaire, E.; Bee, R.; Bell, D. C.; Lips, A.; Stone, H. A. Interfacial polygonal nanopatterning of stable microbubbles. Science 2008, 320 (5880), 1198-1201.
[67] Zhang, L.; Chen, H.; Li, Z.; Fang, H.; Hu, J. Long lifetime of nanobubbles due to high inner density. Science in China Series G: Physics, Mechanics and Astronomy 2008, 51 (2), 219-224.
[68] Alheshibri, M.; Craig, V. S. J. Armoured nanobubbles; ultrasound contrast agents under pressure. Journal of Colloid and Interface Science 2019, 537, 123-131.
[69] Calgaroto, S.; Wilberg, K. Q.; Rubio, J. On the nanobubbles interfacial properties and future applications in flotation. Minerals Engineering 2014, 60, 33-40.
[70] Jia, W.; Ren, S.; Hu, B. Effect of water chemistry on zeta potential of air bubbles. International Journal of Electrochemical Science 2013, 8 (4), 5828-5837.
[71] Yang, C.; Dabros, T.; Li, D.; Czarnecki, J.; Masliyah, J. H. Measurement of the zeta potential of gas bubbles in aqueous solutions by microelectrophoresis method. Journal of Colloid and Interface Science 2001, 243 (1), 128-135.
[72] Takahashi, M. Ζ potential of microbubbles in aqueous solutions: Electrical properties of the gas−water interface. The Journal of Physical Chemistry B 2005, 109 (46), 21858-21864.
[73] Wang, X.; Li, P.; Ning, R.; Ratul, R.; Zhang, X.; Ma, J. Mechanisms on stability of bulk nanobubble and relevant applications: A review. Journal of Cleaner Production 2023, 426, 139153.
[74] Ushikubo, F. Y.; Furukawa, T.; Nakagawa, R.; Enari, M.; Makino, Y.; Kawagoe, Y.; Shiina, T.; Oshita, S. Evidence of the existence and the stability of nano-bubbles in water. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2010, 361 (1), 31-37.
[75] Bunkin, N. F.; Yurchenko, S. O.; Suyazov, N. V.; Shkirin, A. V. Structure of the nanobubble clusters of dissolved air in liquid media. Journal of Biological Physics 2012, 38 (1), 121-152.
[76] Schlesinger, I.; Sivan, U. Three-dimensional characterization of layers of condensed gas molecules forming universally on hydrophobic surfaces. Journal of the American Chemical Society 2018, 140 (33), 10473-10481.
[77] Wang, S.; Zhou, L.; Wang, X.; Wang, C.; Dong, Y.; Zhang, Y.; Gao, Y.; Zhang, L.; Hu, J. Force spectroscopy revealed a high-gas-density state near the graphite substrate inside surface nanobubbles. Langmuir 2019, 35 (7), 2498-2505.
[78] Zhou, L.; Wang, X.; Shin, H.-J.; Wang, J.; Tai, R.; Zhang, X.; Fang, H.; Xiao, W.; Wang, L.; Wang, C.; Gao, X.; Hu, J.; Zhang, L. Ultrahigh density of gas molecules confined in surface nanobubbles in ambient water. Journal of the American Chemical Society 2020, 142 (12), 5583-5593.
[79] Huang, T.-W.; Liu, S.-Y.; Chuang, Y.-J.; Hsieh, H.-Y.; Tsai, C.-Y.; Wu, W.-J.; Tsai, C.-T.; Mirsaidov, U.; Matsudaira, P.; Chang, C.-S.; Tseng, F.-G.; Chen, F.-R. Dynamics of hydrogen nanobubbles in klh protein solution studied with in situ wet-tem. Soft Matter 2013, 9 (37), 8856-8861.
[80] Zhang, M.; Tu, Y.-s.; Fang, H.-p. Concentration of nitrogen molecules needed by nitrogen nanobubbles existing in bulk water. Applied Mathematics and Mechanics 2013, 34 (12), 1433-1438.
[81] Aluthgun Hewage, S.; Meegoda, J. N. Molecular dynamics simulation of bulk nanobubbles. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2022, 650, 129565.
[82] Reid, R. C.; Sherwood, T. K.; Street, R. E. The properties of gases and liquids. Physics Today 1959, 12 (4), 38-40.
[83] Lyu, T.; Wu, S.; Mortimer, R. J. G.; Pan, G. Nanobubble technology in environmental engineering: Revolutionization potential and challenges. Environmental Science & Technology 2019, 53 (13), 7175-7176.
[84] Zhao, L.; Teng, M.; Zhou, L.; Li, Y.; Sun, J.; Zhang, Z.; Wu, F. Hydrogen nanobubble water: A good assistant for improving the water environment and agricultural production. Journal of Agricultural and Food Chemistry 2023, 71 (33), 12369-12371.
[85] Hansen, H. H. W. B.; Cha, H.; Ouyang, L.; Zhang, J.; Jin, B.; Stratton, H.; Nguyen, N.-T.; An, H. Nanobubble technologies: Applications in therapy from molecular to cellular level. Biotechnology Advances 2023, 63, 108091.
[86] Tao, D. Recent advances in fundamentals and applications of nanobubble enhanced froth flotation: A review. Minerals Engineering 2022, 183, 107554.
[87] Marcelino, K. R.; Ling, L.; Wongkiew, S.; Nhan, H. T.; Surendra, K. C.; Shitanaka, T.; Lu, H.; Khanal, S. K. Nanobubble technology applications in environmental and agricultural systems: Opportunities and challenges. Critical Reviews in Environmental Science and Technology 2023, 53 (14), 1378-1403.
[88] Manasa, R. L.; Mehta, A. in Environmental biotechnology vol. 2 (eds K. M. Gothandam, Ranjan, Shivendu, Dasgupta, Nandita, & Lichtfouse, Eric) 197-219 (Springer International Publishing, 2020).
[89] Qadri, H.; Bhat, R.; Mehmood, M.; Hamid Dar, G. Fresh water pollution dynamics and remediation. (2019).
[90] Kalogerakis, N.; Kalogerakis, G.; Botha, Q. Environmental applications of nanobubble technology: Field testing at industrial scale. The Canadian Journal of Chemical Engineering 2021, 99.
[91] Kyzas, G. Z.; Bomis, G.; Kosheleva, R. I.; Efthimiadou, E. K.; Favvas, E. P.; Kostoglou, M.; Mitropoulos, A. C. Nanobubbles effect on heavy metal ions adsorption by activated carbon. Chemical Engineering Journal 2019, 356, 91-97.
[92] Gaur, R. K.; Verma, R. K.; Khurana, S. M. P. in Genetic engineering of horticultural crops (eds Gyana Ranjan Rout & Peter, K. V.) 23-46 (Academic Press, 2018).
[93] English, N. J. Environmental exploration of ultra-dense nanobubbles: Rethinking sustainability. Environments 2022, 9 (3), 33.
[94] Sha, Z.; Chen, Z.; Feng, Y.; Xue, L.; Yang, L.; Cao, L.; Chu, Q. Minerals loaded with oxygen nanobubbles mitigate arsenic translocation from paddy soils to rice. Journal of Hazardous Materials 2020, 398, 122818.
[95] Wang, S.; Liu, Y.; Li, P.; Wang, Y.; Yang, J.; Zhang, W. Micro-nanobubble aeration promotes senescence of submerged macrophytes with low total antioxidant capacity in urban landscape water. Environmental Science: Water Research & Technology 2020, 6 (3), 523-531.
[96] Sambo, P.; Nicoletto, C.; Giro, A.; Pii, Y.; Valentinuzzi, F.; Mimmo, T.; Lugli, P.; Orzes, G.; Mazzetto, F.; Astolfi, S.; Terzano, R.; Cesco, S. Hydroponic solutions for soilless production systems: Issues and opportunities in a smart agriculture perspective. Frontiers in Plant Science 2019, 10.
[97] Kobayashi, N.; Yamaji, K. Leaf lettuce (lactuca sativa l. ‘L-121’) growth in hydroponics with different nutrient solutions used to generate ultrafine bubbles. Journal of Plant Nutrition 2022, 45 (6), 816-827.
[98] Wang, S.; Liu, Y.; Lyu, T.; Pan, G.; Li, P. Aquatic macrophytes in morphological and physiological responses to the nanobubble technology application for water restoration. ACS ES&T Water 2021, 1 (2), 376-387.
[99] Bostock, J.; McAndrew, B.; Richards, R.; Jauncey, K.; Telfer, T.; Lorenzen, K.; Little, D.; Ross, L.; Handisyde, N.; Gatward, I.; Corner, R. Aquaculture: Global status and trends. Philosophical transactions of the Royal Society of London. Series B, Biological sciences 2010, 365, 2897-2912.
[100] Tacon, A. G. Trends in global aquaculture and aquafeed production: 2000–2017. Reviews in Fisheries Science & Aquaculture 2020, 28 (1), 43-56.
[101] Ghobadi, M.; Nasri, M.; Ahmadipari, M. Land suitability assessment (lsa) for aquaculture site selection via an integrated gis-danp multi-criteria method; a case study of lorestan province, iran. Aquaculture 2021, 530, 735776.
[102] Onari, H. Fisheries experiment of cultivated shells using micro-bubbles techniques. Journal of the Heat Transfer Society of Japan 2001, 40, 2-7.
[103] Ebina, K.; Shi, K.; Hirao, M.; Hashimoto, J.; Kawato, Y.; Kaneshiro, S.; Morimoto, T.; Koizumi, K.; Yoshikawa, H. Oxygen and air nanobubble water solution promote the growth of plants, fishes, and mice. PLoS One 2013, 8 (6), e65339.
[104] Averkiou, M. A.; Bruce, M. F.; Powers, J. E.; Sheeran, P. S.; Burns, P. N. Imaging methods for ultrasound contrast agents. Ultrasound in Medicine & Biology 2020, 46 (3), 498-517.
[105] Foley, J.; Eames, M.; Snell, J.; Hananel, A.; Kassell, N.; Aubry, J.-F. Image-guided focused ultrasound: State of the technology and the challenges that lie ahead. Imaging in medicine 2013, 5, 1190-1203.
[106] Krishna, V.; Sammartino, F.; Rezai, A. A review of the current therapies, challenges, and future directions of transcranial focused ultrasound technology: Advances in diagnosis and treatment. JAMA neurology 2018, 75 (2), 246-254.
[107] Jugniot, N.; Massoud, T. F.; Dahl, J. J.; Paulmurugan, R. Biomimetic nanobubbles for triple-negative breast cancer targeted ultrasound molecular imaging. Journal of Nanobiotechnology 2022, 20 (1), 267.
[108] Wu, H.; Abenojar, E. C.; Perera, R.; De Leon, A. C.; An, T.; Exner, A. A. Time-intensity-curve analysis and tumor extravasation of nanobubble ultrasound contrast agents. Ultrasound in Medicine & Biology 2019, 45 (9), 2502-2514.
[109] Deprez, J.; Lajoinie, G.; Engelen, Y.; De Smedt, S. C.; Lentacker, I. Opening doors with ultrasound and microbubbles: Beating biological barriers to promote drug delivery. Advanced Drug Delivery Reviews 2021, 172, 9-36.
[110] Exner, A. A.; Kolios, M. C. Bursting microbubbles: How nanobubble contrast agents can enable the future of medical ultrasound molecular imaging and image-guided therapy. Current Opinion in Colloid & Interface Science 2021, 54, 101463.
[111] Bellotti, E.; Cascone, M.; Barbani, N.; Rossin, D.; Rastaldo, R.; Giachino, C.; Cristallini, C. Targeting cancer cells overexpressing folate receptors with new terpolymer-based nanocapsules: Toward a novel targeted DNA delivery system for cancer therapy. Biomedicines 2021, 9, 1275.
[112] Cooley, M. B.; Abenojar, E. C.; Wegierak, D.; Sen Gupta, A.; Kolios, M. C.; Exner, A. A. Characterization of the interaction of nanobubble ultrasound contrast agents with human blood components. Bioactive Materials 2023, 19, 642-652.
[113] de Leon, A.; Perera, R.; Nittayacharn, P.; Cooley, M.; Jung, O.; Exner, A. A. in Advances in cancer research Vol. 139 (ed Ann-Marie Broome) 57-84 (Academic Press, 2018).
[114] Horiuchi, Y. Ozone sterilization: Renewal option in medical care in the fight against bacteria. American Journal of Therapeutics 2021, 28 (6), e807-e808.
[115] Shawli, H.; Iohara, K.; Tarrosh, M.; Huang, G. T.-J.; Nakashima, M.; Azim, A. A. Nanobubble-enhanced antimicrobial agents: A promising approach for regenerative endodontics. Journal of Endodontics 2020, 46 (9), 1248-1255.
[116] Yoshida, K.; Ikegami, Y.; Obara, S.; Sato, K.; Murakawa, M. Investigation of anti-inflammatory effects of oxygen nanobubbles in a rat hydrochloric acid lung injury model. Nanomedicine 2020, 15 (27), 2647-2654.
[117] Gupta, S.; Shende, P. L-proline adsorbed oxygen-loaded nanobubbles in-situ gel for wound healing. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2022, 647, 129028.
[118] Aikawa, A.; Kioka, A.; Nakagawa, M.; Anzai, S. Nanobubbles as corrosion inhibitor in acidic geothermal fluid. Geothermics 2021, 89, 101962.
[119] Liu, G.; Wu, Z.; Craig, V. S. J. Cleaning of protein-coated surfaces using nanobubbles: An investigation using a quartz crystal microbalance. The Journal of Physical Chemistry C 2008, 112 (43), 16748-16753.
[120] Yoon, R. H. Microbubble flotation. Minerals Engineering 1993, 6 (6), 619-630.
[121] Nguyen, A.; Schulze, a. Colloidal science of flotation. (2004).
[122] Li, C.; Zhang, H. A review of bulk nanobubbles and their roles in flotation of fine particles. Powder Technology 2021, 395.
[123] Yoon, R. H.; Luttrell, G. H. The effect of bubble size on fine particle flotation. Mineral Processing and Extractive Metallurgy Review 1989, 5 (1-4), 101-122.
[124] Zhang, Z.; Ren, L.; Zhang, Y. Role of nanobubbles in the flotation of fine rutile particles. Minerals Engineering 2021, 172, 107140.
[125] Liu, S.; Kawagoe, Y.; Makino, Y.; Oshita, S. Effects of nanobubbles on the physicochemical properties of water: The basis for peculiar properties of water containing nanobubbles. Chemical Engineering Science 2013, 93, 250-256.
[126] Ogawa, Y.; Iwanaga, M.; Aoki, T. (Google Patents, 2012).
[127] Tian, Y.; Zhang, Z.; Zhu, Z.; Sun, D.-W. Effects of nano-bubbles and constant/variable-frequency ultrasound-assisted freezing on freezing behaviour of viscous food model systems. Journal of Food Engineering 2021, 292, 110284.
Downloads
Published
Issue
Section
License
Copyright (c) 2024 World Scientific Research Journal

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.