Advances in Laser Micro-welding of Transparent Hard Brittle (THB) Materials
DOI:
https://doi.org/10.6911/WSRJ.202503_11(3).0008Keywords:
Micro-welding; THB; UF laser; Linear absorption; Conventional laser; Nonlinear absorption.Abstract
Transparent hard brittle (THB) materials have attracted much attention due to their properties such as broad spectral transmittance, excellent chemical inertness, and high hardness, but they often face micro-joining challenges in practical applications. Laser processing is a contactless and high-precision processing method, which has become an important technology in the field of micro-welding due to its wide range of applications, easy operation and high efficiency. In this paper, the effects of different lasers in THB due to different energy deposition are analyzed by taking the characteristic time of electron-phonon coupling of 10 ps as the boundary. The article focuses on summarizing the current research status and welding methods of conventional laser welding and ultra fast (UF) laser welding at home and abroad, and puts forward feasible suggestions for future research, which will provide a reference for the in-depth study of laser micro-welding of THB materials.
Downloads
References
[1] K. Cvecek, I. Alexeev, I. Miyamoto and M. Schmidt: Defect formation in glass welding by means of ultra short laser pulses, Physics Procedia, Vol. 5 (2010), p.495-502.
[2] D.Hélie, M. Bégin, F. Lacroix and R. Vallée: Reinforced direct bonding of optical materials by femtosecond laser welding, Applied optics, Vol. 51 (2010) No.12, p.2098-106.
[3] Y. Zhang, X. Li, Q. Zhu, W. Wei and X. Liu: Photocurable hyperbranched polymer medical glue for water-resistant bonding, Biomacromolecules,Vol. 21 (2020) No.12, p. 5222-32.
[4] K.M. Knowles and A.T. Van Helvoort: Anodic bonding, International materials reviews, Vol. 51 (2006) No.5, p.273-311.
[5] H.I. Smith: Optical‐Contact Bonding, The Journal of the Acoustical Society of America, Vol. 5 (1965) No.37, p.928-9.
[6] C. Ageorges, L.Ye and M. Hou: Advances in fusion bonding techniques for joining thermoplastic matrix composites: a review, Composites Part A: applied science and manufacturing, Vol. 32 (2001) No.6, p. 839-57.
[7] Q.Y. Tong, G. Cha, R. Gafiteanu and U. Gosele: Low temperature wafer direct bonding, Journal of microelectromechanical systems, Vol. 3 (1994) No.1, p. 29-35.
[8] J.P. Bergmann, F. Petzoldt, R. Schürer and S. Schneider: Solid-state welding of aluminum to copper—case studies, Welding in the World, Vol. 57 (2013), p. 541-50.
[9] A. Hu and Y. Zhou: Laser welding, microwelding, nanowelding and nanoprocessing, Chinese Journal of Lasers, Vol. 36 (2009) No.12, p. 3149-59.
[10] A. Mathieu, R. Shabadi, A. Deschamps, M. Suery, S. Matteï, D. Grevey and E. Cicala: Dissimilar material joining using laser (aluminum to steel using zinc-based filler wire), Optics & Laser Technology, Vol. 39 (2007) No.3, p. 652-61.
[11] N. Lorenz, S. Millar, M. Desmulliez and D.P. Hand: Hermetic glass frit packaging in air and vacuum with localized laser joining, Journal of Micromechanics and Microengineering, Vol. 21 (2011) No.4, p. 045039.
[12] Q. Wu, N. Lorenz, K.M. Cannon and D.P. Hand: Glass frit as a hermetic joining layer in laser based joining of miniature devices, IEEE Transactions on components and packaging technologies, Vol. 33 (2010) No.2, p. 470-7.
[13] C.Y. Lin, Y.H. Shen, C.C. Huang and S.L. Tu: Laser sealing of organic light-emitting diode using low melting temperature glass frit, Optical and Quantum Electronics, Vol. 49 (2017) No.3, p. 1-0.
[14] S. Emami, J. Martins, L. Andrade, J. Mendes and A. Mendes: Low temperature hermetic laser-assisted glass frit encapsulation of soda-lime glass substrates, Optics and Lasers in Engineering, Vol. 96 (2017), p. 107-16.
[15] Q. Wu, N. Lorenz and D.P. Hand: Localised laser joining of glass to silicon with BCB intermediate layer, Microsystem technologies, Vol. 15 (2009) No.3, p. 1051-7.
[16] N. Lorenz, M.D. Smith and D.P. Hand: Wafer-level packaging of silicon to glass with a BCB intermediate layer using localised laser heating, Microelectronics Reliability, Vol. 51 (2011) No.12, p. 2257-62.
[17] F. Bardin, S. Kloss, C. Wang, A.J. Moore, A. Jourdain, I. De Wolf and D.P. Hand: Laser bonding of glass to silicon using polymer for microsystems packaging, Journal of Microelectromechanical systems, Vol. 16 (2007) No.3, p. 571-80.
[18] A.W. Tan and F.E. Tay: Localized laser assisted eutectic bonding of quartz and silicon by Nd: YAG pulsed-laser, Sensors and Actuators A: Physical, Vol. 120 (2005) No.2, p. 550-61.
[19] C. Luo and L. Lin: The application of nanosecond-pulsed laser welding technology in MEMS packaging with a shadow mask, Sensors and Actuators A: Physical, Vol. 97 (2002), p. 398-404.
[20] A. de Pablos-Martín and Th. Höche: Laser welding of glasses using a nanosecond pulsed Nd: YAG laser, Optics and Lasers in Engineering, Vol. 90 (2017), p. 1-9.
[21] H. Wang, L. Guo, X. Zhang, J. Dong, Q. Lue, Q. Zhang, Q. Jiang, T. Chen and J. Li: Influence of processing parameters on the quality of titanium-coated glass welded by nanosecond pulse laser, Optics & Laser Technology, Vol. 144 (2021) No.3, p. 107411.
[22] J. Huo, J. Yuan, Q. Chen, M. Luo, J. Lu, J. Xu, C. Li, A. Luo, J. Li and Q. Zhang: Welding reinforcement between silica glass and stainless steel using nanosecond fiber laser with chromium interlayer, Optics and Lasers in Engineering, Vol. 172 (2024), p. 107877.
[23] A. Utsumi, T. Ooie, T. Yano and M. Katsumura: Direct bonding of glass and metal using short pulsed laser, Journal of Laser Micro/Nanoengineering, Vol. 2(2007) No.2, p. 133-6.
[24] M. Zhang, Y.F. Chan, C.J. Chen. and Z.L. Qiu: A new sealing technology for ultra-thin glass to aluminum alloy by laser transmission welding method, The International Journal of Advanced Manufacturing Technology, Vol. 115 (2021) No.7, p. 2017-35.
[25] P. Li, X. Xu, W. Tan, H. Liu and X. Wang: Improvement of laser transmission welding of glass with titanium alloy by laser surface treatment, Materials, Vol. 11 (2018) No.10, p. 2060.
[26] H. Nguyen, C.K. Lin, P.C. Tung. and J.R. Ho: Characterizations of laser transmission welding of glass and copper using nanosecond pulsed laser, The International Journal of Advanced Manufacturing Technology, Vol. 130 (2024) No.5, p. 2755-70.
[27] L. Li, C. Chen, C. Li, M. Xu, M. Zhang, C. Tian and W. Zhang: The influence of anodization on laser transmission welding between high borosilicate glass and TC4 titanium alloy, Optics & Laser Technology, Vol. 181 (2025), p. 111590.
[28] S. Nolte, M. Will, J. Burghoff and A. Tuennermann: Femtosecond waveguide writing: a new avenue to three-dimensional integrated optics, Applied Physics A, Vol. 77 (2003), p. 109-11.
[29] K. Cvecek, R. Odato, S. Dehmel, I. Miyamoto and M. Schmidt: Gap bridging in joining of glass using ultra short laser pulses, Optics express, Vol. 23 (2015) No.5, p. 5681-93.
[30] R. Knechtel: Glass frit bonding: an universal technology for wafer level encapsulation and packaging, Microsystem technologies, Vol. 12 (2005) No.1, p. 63-8.
[31] T. Tamaki, W. Watanabe, J. Nishii and K. Itoh: Welding of transparent materials using femtosecond laser pulses, Japanese journal of applied physics, Vol. 44 (2005) No.5, p. L687.
[32] K. Cvecek, S. Dehmel, I. Miyamoto and M. Schmidt: A review on glass welding by ultra-short laser pulses, International Journal of Extreme Manufacturing, Vol. 4 (2019) No.1, p. 042001.
[33] J. Chen, R.M. Carter, R.R. Thomson and D.P. Hand: Avoiding the requirement for pre-existing optical contact during picosecond laser glass-to-glass welding: erratum, Optics Express, Vol. 23 (2015) No.21, p. 28104-5.
[34] T. Tamaki, W. Watanabe and K. Itoh: Laser micro-welding of transparent materials by a localized heat accumulation effect using a femtosecond fiber laser at 1558 nm, Optics express, Vol. 22 (2006) No.14, p. 10460-8.
[35] S. Richter, S. Döring, A. Tünnermann and S. Nolte: Bonding of glass with femtosecond laser pulses at high repetition rates, Applied physics A, Vol. 103 (2011), p. 257-61.
[36] I. Miyamoto, K. Cvecek and M. Schmidt: Evaluation of nonlinear absorptivity in internal modification of bulk glass by ultrashort laser pulses, Optics Express, Vol. 21 (2011) No.19, p. 10714-27.
[37] F. Zimmermann, S. Richter, S. Döring, A. Tünnermann and S. Nolte: Ultrastable bonding of glass with femtosecond laser bursts, Applied Optics, Vol. 26 (2013) No.5, p. 1149-54.
[38] S. Butkus, E. Gaižauskas, D. Paipulas, Ž. Viburys, D. Kaškelyė, M. Barkauskas, A. Alesenkov and V. Sirutkaitis: Rapid microfabrication of transparent materials using filamented femtosecond laser pulses, Applied Physics A, Vol. 114 (2014) No.3, p. 81-90.
[39] A. Horn, I. Mingareev and A. Werth: Investigations on melting and welding of glass by ultra-short laser radiation, J. Laser Micro/Nanoeng, Vol. 2(2008) No.3, p. 114-8.
[40] I. Alexeev, K. Cvecek, C. Schmidt, I. Miyamoto, T. Frick and M. Schmidt: Characterization of Shear Strength and Bonding Energy of Laser Produced Welding Seams in Glass, Journal of Laser Micro/Nanoengineering, Vol. 3 (2012) No.7.
[41] I. Miyamoto, A. Horn and J. Gottmann: Local melting of glass material and its application to direct fusion welding by ps-laser pulses, J. Laser Micro/Nanoeng, Vol. 2 (2007) No.1, p. 7-14.
[42] E.H. Penilla, L.F. Devia-Cruz, A.T. Wieg, P. Martinez-Torres, N. Cuando-Espitia, P. Sellappan, Y. Kodera, G. Aguilar and J.E. Garay: Ultrafast laser welding of ceramics, Science, Vol. 365 (2019) No.6455, p. 803-8.
[43] X. Jia, K. Li, Z. Li, C. Wang, J. Chen and S. Cui: Multi-scan picosecond laser welding of non-optical contact soda lime glass, Optics & Laser Technology, Vol. 161 (2023) No.3, p. 109164.
[44] K. Cvecek, R. Odato, S. Dehmel, I. Miyamoto and M. Schmidt : Gap bridging in joining of glass using ultra short laser pulses, Optics express, Vol. 23 (2015) No.5, p. 5681-93.
[45] J. Chen, R.M. Carter, R.R. Thomson and D.P. Hand: Avoiding the requirement for pre-existing optical contact during picosecond laser glass-to-glass welding: erratum, Optics Express, Vol. 23 (2015) No.21, p. 28104-5.
[46] H. Chen, L. Deng, J. Duan and X. Zeng: Picosecond laser welding of glasses with a large gap by a rapid oscillating scan, Optics letters, Vol. 44 (2019) No.10, p. 2570-3.
[47] H. Chen, J. Duan, Z. Yang, W. Xiong and L. Deng: Picosecond laser seal welding of glasses with a large gap, Optics express, Vol. 27 (2019) No.21, p. 30297-30307.
[48] H. Chen, Y. Rong, Y. Huang and C. Wu: Crack suppression of glass welding by ultrafast laser without optical contact based on light modulation, Optics & Laser Technology, Vol. 164 (2023) , p. 109466.
[49] Z. Gao, J. He, X. Jia, Z. Yi, C. Li, S. Zhang, C. Wang and J.A. Duan: High-Strength Welding of Silica Glass Using Double-Pulse Femtosecond Laser under Non-Optical Contact Conditions, InPhotonics, Vol. 11 (2024) No.10, p.945.
[50] W. Watanabe, S. Onda, T. Tamaki, K. Itoh and J. Nishii: Space-selective laser joining of dissimilar transparent materials using femtosecond laser pulses. Applied physics letters, Vol. 89 (2006) No.2. p.021106.
[51] W. Watanabe, S. Onda, T. Tamaki and K. Itoh: Direct joining of glass substrates by 1 kHz femtosecond laser pulses, Applied Physics B, Vol. 87 (2007), p. 85-9.
[52] I.H. Nordin, Y. Okamoto, A. Okada, H. Jiang and T. Sakagawa: Effect of wavelength and pulse duration on laser micro-welding of monocrystalline silicon and glass, Applied Physics A, Vol. 122 (2016), p. 1-7.
[53] A. Horn, I.Mingareev and Werth A: Investigations on melting and welding of glass by ultra-short laser radiation, J. Laser Micro/Nanoeng, Vol. 3 (2007) No.2, p. 114-8.
[54] S. Richter, F. Zimmermann, R. Eberhardt, A. Tünnermann and S. Nolte: Toward laser welding of glasses without optical contacting, Applied Physics A, Vol. 121 (2015), p. 1-9.
[55] D. Hélie, F. Lacroix and R. Vallee: Reinforcing a direct bond between optical materials by filamentation based femtosecond laser welding, Journal of Laser Micro Nanoengineering, Vol. 7 (2012) No.3, p.284.
[56] T. Tamaki, W. Watanabe and K. Itoh: Laser micro-welding of silicon and borosilicate glass using nonlinear absorption effect induced by 1558-nm femtosecond fiber laser pulses, InCommercial and Biomedical Applications of Ultrafast Lasers VII, Vol. 6460 (2007), p. 197-203.
[57] I. Miyamoto, Y. Okamoto, A. Hansen, J. Vihinen, T. Amberla and J. Kangastupa: High speed, high strength microwelding of Si/glass using ps-laser pulses, Optics express, Vol. 23 (2015) No.3, p. 3427-39.
[58] I.H. Nordin, Y. Okamoto, A. Okada, H. Jiang and T. Sakagawa: Effect of wavelength and pulse duration on laser micro-welding of monocrystalline silicon and glass, Applied Physics A, Vol. 122 (2016), p. 1-7.
[59] Y. Ozeki, T. Inoue, T. Tamaki, H. Yamaguchi, S. Onda, W. Watanabe, T. Sano, S.Nishiuchi, A. Hirose and K. Itoh: Direct Welding between Copper and Glass Substrates with Femtosecond Laser Pulses, Applied physics express, Vol. 1 (2008) No.8, p. 082601.
[60] R.M.Carter, J.Y.Chen, J.D. Shephard, R.R. Thomson and D.P. Hand: Picosecond laser welding of similar and dissimilar materials, Applied optics, Vol. 53 (2014) No.19, p. 4233-8.
[61] J. Zhang, S. Xu, Y. Dong, C. Zhang, J. Li, L. Guo and Q. Zhang: Microwelding of glass to silicon by green ultrafast laser pulses, Optics & Laser Technology, Vol. 120 (2019), p. 105720.
[62] S. Matsuyoshi, Y. Mizuguchi, A. Muratsugu, H. Yamada, T. Tamaki and W. Watanabe: Welding of glass and copper with a rough surface using femtosecond fiber laser pulses, Journal of Laser Micro Nanoengineering, Vol. 13 (2018) No.1, p. 21-5.
[63] W. Wei, Y. Liu, J. Wu, Z. Wei, Z. Zhou and Y. Long: In-situ monitoring method of femtosecond laser welding between glass and copper with acoustic emission, Measurement, Vol. 240 (2025), p. 115568.
[64] O.P. Ciuca, R.M. Carter, P.B. Prangnell and D.P. Hand: Characterisation of weld zone reactions in dissimilar glass-to-aluminium pulsed picosecond laser welds, Materials Characterization, Vol. 120 (2016), p. 53-62.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 World Scientific Research Journal

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.



